Poscholars image

POSCHOLARS

Poscholars image
HomeOnline QuizWAEC/GCE/NECOJamb UpdatesScholarshipsPost UTMEStudy Guides

Jamb Mathematics - Lesson Notes on Differentiation for UTME Candidate

Feb 15 2025 12:00 PM

Osason

Jamb Updates

Differentiation | Jamb Mathematics

paragraph
Gear up for your differentiation exam with precision and strategy! Master the rules, from basic derivatives to advanced applications, ensuring you're ready to tackle any problem with confidence. Stay sharp, practice consistently, and approach each question with a clear, systematic method—success is in the details!
paragraph
Are you preparing for your JAMB Mathematics exam and feeling a bit uncertain about how to approach the topic of Differentiation? Don’t worry—you’re in the right place! This lesson is here to break it down in a simple, clear, and engaging way, helping you build the strong foundation you need to succeed. Whether you're struggling with complex questions or just seeking a quick refresher, this guide will boost your understanding and confidence. Let’s tackle Differentiation together and move one step closer to achieving your exam success! Blissful learning.
paragraph

Calculation problem on limit of a function

paragraph
Question 1:
Evaluate limx3(2x+5)\lim_{x \to 3} (2x + 5).
Solution:
Since the function f(x)=2x+5f(x) = 2x + 5 is continuous, we substitute x=3x = 3 directly:
limx3(2x+5)=2(3)+5=6+5=11\lim_{x \to 3} (2x + 5) = 2(3) + 5 = 6 + 5 = 11.

Question 2:
Evaluate limx4(x22x+1)\lim_{x \to 4} (x^2 - 2x + 1).
Solution:
The function is a polynomial, so we directly substitute x=4x = 4:
limx4(422(4)+1)=168+1=9\lim_{x \to 4} (4^2 - 2(4) + 1) = 16 - 8 + 1 = 9.

Question 3:
Evaluate limx2x24x2\lim_{x \to 2} \frac{x^2 - 4}{x - 2}.
Solution:
Substituting x=2x = 2 gives 4422=00\frac{4 - 4}{2 - 2} = \frac{0}{0}, an indeterminate form.
Factor the numerator:
x24x2=(x2)(x+2)x2\frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{x - 2}.
Cancel (x2)(x - 2):
limx2(x+2)=2+2=4\lim_{x \to 2} (x + 2) = 2 + 2 = 4.

Question 4:
Find limx0sinxx\lim_{x \to 0} \frac{\sin x}{x}.
Solution:
This is a standard limit result:
limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1.

Question 5:
Evaluate limx3x2+57x2+2\lim_{x \to \infty} \frac{3x^2 + 5}{7x^2 + 2}.
Solution:
Divide numerator and denominator by x2x^2:
limx3+5x27+2x2=37\lim_{x \to \infty} \frac{3 + \frac{5}{x^2}}{7 + \frac{2}{x^2}} = \frac{3}{7}.

Question 6:
Find limx2x3+54x33x\lim_{x \to -\infty} \frac{2x^3 + 5}{4x^3 - 3x}.
Solution:
Divide by x3x^3:
limx2+5x343x2=24=12\lim_{x \to -\infty} \frac{2 + \frac{5}{x^3}}{4 - \frac{3}{x^2}} = \frac{2}{4} = \frac{1}{2}.

Question 7:
Find limx2x38x2\lim_{x \to 2} \frac{x^3 - 8}{x - 2}.
Solution:
Factor numerator as (x2)(x2+2x+4)(x - 2)(x^2 + 2x + 4):
limx2(x2+2x+4)=4+4+4=12\lim_{x \to 2} (x^2 + 2x + 4) = 4 + 4 + 4 = 12.

Question 8:
Evaluate limx01cosxx2\lim_{x \to 0} \frac{1 - \cos x}{x^2}.
Solution:
Using cosx1x22\cos x \approx 1 - \frac{x^2}{2} for small xx,
1(1x22)x2=x2/2x2=12\frac{1 - (1 - \frac{x^2}{2})}{x^2} = \frac{x^2/2}{x^2} = \frac{1}{2}.
Thus, limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.

Question 9:
Find limx0ex1x\lim_{x \to 0} \frac{e^x - 1}{x}.
Solution:
Using ex1+xe^x \approx 1 + x for small xx,
(1+x)1x=xx=1\frac{(1 + x) - 1}{x} = \frac{x}{x} = 1.
Thus, limx0ex1x=1\lim_{x \to 0} \frac{e^x - 1}{x} = 1.

Question 10:
Evaluate limx3x29x3\lim_{x \to 3} \frac{x^2 - 9}{x - 3}.
Solution:
Factor numerator:
(x3)(x+3)x3\frac{(x - 3)(x + 3)}{x - 3}.
Cancel (x3)(x - 3):
limx3(x+3)=3+3=6\lim_{x \to 3} (x + 3) = 3 + 3 = 6.

Question 11:
Find limx0tanxx\lim_{x \to 0} \frac{\tan x}{x}.
Solution:
Using the standard limit result:
limx0tanxx=1\lim_{x \to 0} \frac{\tan x}{x} = 1.

Question 12:
Find limx1x41x1\lim_{x \to 1} \frac{x^4 - 1}{x - 1}.
Solution:
Factor numerator:
x41=(x1)(x3+x2+x+1)x^4 - 1 = (x - 1)(x^3 + x^2 + x + 1).
Cancel (x1)(x - 1):
limx1(x3+x2+x+1)=1+1+1+1=4\lim_{x \to 1} (x^3 + x^2 + x + 1) = 1 + 1 + 1 + 1 = 4.

Question 13:
Find limx0xsinxx3\lim_{x \to 0} \frac{x - \sin x}{x^3}.
Solution:
Using the approximation sinxxx36\sin x \approx x - \frac{x^3}{6},
x(xx36)x3=x3/6x3=16\frac{x - (x - \frac{x^3}{6})}{x^3} = \frac{x^3/6}{x^3} = \frac{1}{6}.
Thus, limx0xsinxx3=16\lim_{x \to 0} \frac{x - \sin x}{x^3} = \frac{1}{6}.

Question 14:
Evaluate limx2x38x24\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}.
Solution:
Factor numerator:
x38=(x2)(x2+2x+4)x^3 - 8 = (x - 2)(x^2 + 2x + 4).
Factor denominator:
x24=(x2)(x+2)x^2 - 4 = (x - 2)(x + 2).
Cancel (x2)(x - 2):
limx2x2+2x+4x+2=4+4+42+2=124=3\lim_{x \to 2} \frac{x^2 + 2x + 4}{x + 2} = \frac{4 + 4 + 4}{2 + 2} = \frac{12}{4} = 3.

Question 15:
Evaluate limx0ln(1+x)x\lim_{x \to 0} \frac{\ln(1 + x)}{x}.
Solution:
Using the standard limit result:
limx0ln(1+x)x=1\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1.
paragraph

Calculation problem on Differentiation of explicit algebraic expression

paragraph
Question 1:
Find ddx(3x2+5x7)\frac{d}{dx} (3x^2 + 5x - 7).
Solution:
Differentiate term by term:
ddx(3x2)=6x\frac{d}{dx} (3x^2) = 6x
ddx(5x)=5\frac{d}{dx} (5x) = 5
ddx(7)=0\frac{d}{dx} (-7) = 0
Thus, ddx(3x2+5x7)=6x+5\frac{d}{dx} (3x^2 + 5x - 7) = 6x + 5.

Question 2:
Find ddx(x34x+7)\frac{d}{dx} (x^3 - 4x + 7).
Solution:
Using power rule:
ddx(x3)=3x2\frac{d}{dx} (x^3) = 3x^2
ddx(4x)=4\frac{d}{dx} (-4x) = -4
ddx(7)=0\frac{d}{dx} (7) = 0
Thus, ddx(x34x+7)=3x24\frac{d}{dx} (x^3 - 4x + 7) = 3x^2 - 4.

Question 3:
Find ddx(x4+2x2x+5)\frac{d}{dx} (x^4 + 2x^2 - x + 5).
Solution:
Using power rule:
ddx(x4)=4x3\frac{d}{dx} (x^4) = 4x^3
ddx(2x2)=4x\frac{d}{dx} (2x^2) = 4x
ddx(x)=1\frac{d}{dx} (-x) = -1
ddx(5)=0\frac{d}{dx} (5) = 0
Thus, ddx(x4+2x2x+5)=4x3+4x1\frac{d}{dx} (x^4 + 2x^2 - x + 5) = 4x^3 + 4x - 1.

Question 4:
Find ddx(5x53x3+7)\frac{d}{dx} (5x^5 - 3x^3 + 7).
Solution:
Differentiate each term:
ddx(5x5)=25x4\frac{d}{dx} (5x^5) = 25x^4
ddx(3x3)=9x2\frac{d}{dx} (-3x^3) = -9x^2
ddx(7)=0\frac{d}{dx} (7) = 0
Thus, ddx(5x53x3+7)=25x49x2\frac{d}{dx} (5x^5 - 3x^3 + 7) = 25x^4 - 9x^2.

Question 5:
Find ddx(x62x4+x8)\frac{d}{dx} (x^6 - 2x^4 + x - 8).
Solution:
ddx(x6)=6x5\frac{d}{dx} (x^6) = 6x^5
ddx(2x4)=8x3\frac{d}{dx} (-2x^4) = -8x^3
ddx(x)=1\frac{d}{dx} (x) = 1
ddx(8)=0\frac{d}{dx} (-8) = 0
Thus, ddx(x62x4+x8)=6x58x3+1\frac{d}{dx} (x^6 - 2x^4 + x - 8) = 6x^5 - 8x^3 + 1.

Question 6:
Find ddx(7x2+4x3)\frac{d}{dx} (7x^2 + 4x - 3).
Solution:
ddx(7x2)=14x\frac{d}{dx} (7x^2) = 14x
ddx(4x)=4\frac{d}{dx} (4x) = 4
ddx(3)=0\frac{d}{dx} (-3) = 0
Thus, ddx(7x2+4x3)=14x+4\frac{d}{dx} (7x^2 + 4x - 3) = 14x + 4.

Question 7:
Find ddx(x3+x2+x+1)\frac{d}{dx} (x^3 + x^2 + x + 1).
Solution:
ddx(x3)=3x2\frac{d}{dx} (x^3) = 3x^2
ddx(x2)=2x\frac{d}{dx} (x^2) = 2x
ddx(x)=1\frac{d}{dx} (x) = 1
ddx(1)=0\frac{d}{dx} (1) = 0
Thus, ddx(x3+x2+x+1)=3x2+2x+1\frac{d}{dx} (x^3 + x^2 + x + 1) = 3x^2 + 2x + 1.

Question 8:
Find ddx(x5x3+2x)\frac{d}{dx} (x^5 - x^3 + 2x).
Solution:
ddx(x5)=5x4\frac{d}{dx} (x^5) = 5x^4
ddx(x3)=3x2\frac{d}{dx} (-x^3) = -3x^2
ddx(2x)=2\frac{d}{dx} (2x) = 2
Thus, ddx(x5x3+2x)=5x43x2+2\frac{d}{dx} (x^5 - x^3 + 2x) = 5x^4 - 3x^2 + 2.

Question 9:
Find ddx(x32x12)\frac{d}{dx} (x^{\frac{3}{2}} - x^{\frac{1}{2}}).
Solution:
Using the power rule:
ddx(x32)=32x12\frac{d}{dx} (x^{\frac{3}{2}}) = \frac{3}{2}x^{\frac{1}{2}}
ddx(x12)=12x12\frac{d}{dx} (-x^{\frac{1}{2}}) = -\frac{1}{2}x^{-\frac{1}{2}}
Thus, ddx(x32x12)=32x1212x12\frac{d}{dx} (x^{\frac{3}{2}} - x^{\frac{1}{2}}) = \frac{3}{2}x^{\frac{1}{2}} - \frac{1}{2}x^{-\frac{1}{2}}.

Question 10:
Find ddx(x4+5x13)\frac{d}{dx} (x^4 + 5x^{\frac{1}{3}}).
Solution:
Using the power rule:
ddx(x4)=4x3\frac{d}{dx} (x^4) = 4x^3
ddx(5x13)=53x23\frac{d}{dx} (5x^{\frac{1}{3}}) = \frac{5}{3}x^{-\frac{2}{3}}
Thus, ddx(x4+5x13)=4x3+53x23\frac{d}{dx} (x^4 + 5x^{\frac{1}{3}}) = 4x^3 + \frac{5}{3}x^{-\frac{2}{3}}.

Problem 11: Differentiate implicitly
x2+y2=sin(y)x^2 + y^2 = \sin(y)
Solution:
  1. Differentiate both sides with respect to xx, treating yy as an implicit function of xx. 2x+2ydydx=cos(y)dydx2x + 2y \frac{dy}{dx} = \cos(y) \frac{dy}{dx}
  2. Solve for dydx\frac{dy}{dx}: dydx(2ycosy)=2x\frac{dy}{dx} (2y - \cos y) = -2x dydx=2x2ycosy\frac{dy}{dx} = \frac{-2x}{2y - \cos y}

Problem 12: Differentiate implicitly
tan(y)+x3=y3\tan(y) + x^3 = y^3
Solution:
  1. Differentiate both sides: sec2ydydx+3x2=3y2dydx\sec^2 y \frac{dy}{dx} + 3x^2 = 3y^2 \frac{dy}{dx}
  2. Solve for dydx\frac{dy}{dx}: dydx(sec2y3y2)=3x2\frac{dy}{dx} (\sec^2 y - 3y^2) = -3x^2 dydx=3x2sec2y3y2\frac{dy}{dx} = \frac{-3x^2}{\sec^2 y - 3y^2}

Seconnd Derivative Problems
Problem 13: Find
d2ydx2\frac{d^2y}{dx^2} for y=sin(2x)y = \sin(2x)
Solution:
  1. First derivative: dydx=2cos(2x)\frac{dy}{dx} = 2\cos(2x)
  2. Second derivative: d2ydx2=4sin(2x)\frac{d^2y}{dx^2} = -4\sin(2x)

Problem 14: Find
d2ydx2\frac{d^2y}{dx^2} for y=tan(x)y = \tan(x)
Solution:
  1. First derivative: dydx=sec2x\frac{dy}{dx} = \sec^2 x
  2. Second derivative: d2ydx2=2sec2xtanx\frac{d^2y}{dx^2} = 2\sec^2 x \tan x

Inverse Trigonometric Function Problems
Problem 15: Differentiate
y=arcsin(x2)y = \arcsin(x^2)
Solution:
  1. Use the chain rule: dydx=11(x2)22x\frac{dy}{dx} = \frac{1}{\sqrt{1 - (x^2)^2}} \cdot 2x
  2. Simplify: dydx=2x1x4\frac{dy}{dx} = \frac{2x}{\sqrt{1 - x^4}}

Problem 16: Differentiate
y=arctan(3x)y = \arctan(3x)
Solution:
  1. Use the chain rule: dydx=11+(3x)23\frac{dy}{dx} = \frac{1}{1 + (3x)^2} \cdot 3
  2. Simplify: dydx=31+9x2\frac{dy}{dx} = \frac{3}{1 + 9x^2}

Higher Order Differentiation Problems
Problem 17: Find
d3ydx3\frac{d^3y}{dx^3} for y=cos(4x)y = \cos(4x)
Solution:
  1. First derivative: dydx=4sin(4x)\frac{dy}{dx} = -4\sin(4x)
  2. Second derivative: d2ydx2=16cos(4x)\frac{d^2y}{dx^2} = -16\cos(4x)
  3. Third derivative: d3ydx3=64sin(4x)\frac{d^3y}{dx^3} = 64\sin(4x)

Problem 18: Find
d3ydx3\frac{d^3y}{dx^3} for y=excosxy = e^x \cos x
Solution:
  1. First derivative: dydx=excosxexsinx\frac{dy}{dx} = e^x \cos x - e^x \sin x
  2. Second derivative: d2ydx2=excosxexsinxexsinxexcosx\frac{d^2y}{dx^2} = e^x \cos x - e^x \sin x - e^x \sin x - e^x \cos x d2ydx2=2exsinx\frac{d^2y}{dx^2} = -2e^x \sin x
  3. Third derivative: d3ydx3=2excosx2exsinx\frac{d^3y}{dx^3} = -2e^x \cos x - 2e^x \sin x d3ydx3=2ex(cosx+sinx)\frac{d^3y}{dx^3} = -2e^x (\cos x + \sin x)

Mixed Application Problems
Problem 19: Differentiate
y=x2arcsinxy = x^2 \arcsin x
Solution:
  1. Use the product rule:
    • First term: u=x2u=2xu = x^2 \Rightarrow u' = 2x
    • Second term: v=arcsinxv=11x2v = \arcsin x \Rightarrow v' = \frac{1}{\sqrt{1 - x^2}}
  2. Apply the product rule: dydx=2xarcsinx+x21x2\frac{dy}{dx} = 2x \arcsin x + \frac{x^2}{\sqrt{1 - x^2}}

Problem 20: Differentiate
y=tanxxy = \frac{\tan x}{x}
Solution:
  1. Use the quotient rule:
    • u=tanxu=sec2xu = \tan x \Rightarrow u' = \sec^2 x
    • v=xv=1v = x \Rightarrow v' = 1
  2. Apply the quotient rule: dydx=(xsec2xtanx)x2\frac{dy}{dx} = \frac{(x\sec^2 x - \tan x)}{x^2}

paragraph
Thank you for taking the time to read my blog post! Your interest and engagement mean so much to me, and I hope the content provided valuable insights and sparked your curiosity. Your journey as a student is inspiring, and it’s my goal to contribute to your growth and success.
paragraph
If you found the post helpful, feel free to share it with others who might benefit. I’d also love to hear your thoughts, feedback, or questions—your input makes this space even better. Keep striving, learning, and achieving! 😊📚✨
paragraph

I recommend you check my Post on the following:

Share this post with your friends on social media if you learned something or was informed.

Leave a Reply
Your email address will not be published. Required fields are marked *

Save my name and email in this browser for the next time I comment.

Subscribe to our newsletter so you could get the latest post via E-mail

Recent Posts:


Jamb Mathematics - Lesson Notes on Probability for UTME Candidate
Jamb Mathematics - Lesson Notes on Permutation and Combination for UTME Candidate
Jamb Mathematics - Lesson Notes on Measure of Dispersion for UTME Candidate
Jamb Mathematics - Lesson Notes on Measure of Location for UTME Candidate

Stay Updated:

Like us on Facebook

Explore


Quick Links