Poscholars image

POSCHOLARS

Poscholars image
HomeOnline QuizWAEC/GCE/NECOJamb UpdatesScholarshipsPost UTMEStudy Guides

Jamb Mathematics - Lesson Notes on Indices, Logarithms and surds for UTME Candidate

Jan 24 2025 10:19 PM

Osason

Jamb Updates

Indices, Logarithms and surds | Jamb Mathematics

paragraph
This is a reminder to dedicate time to thorough preparation for the upcoming exam. The assessment will test your understanding of key concepts and their applications, emphasizing critical thinking and problem-solving skills. Please ensure you review all relevant materials, practice problem sets, and clarify any uncertainties prior to the exam date.
paragraph
Are you preparing for your JAMB Mathematics exam and feeling a bit uncertain about how to approach the topic of Indices, logarithms and Surd? Don’t worry—you’re in the right place! This lesson is here to break it down in a simple, clear, and engaging way, helping you build the strong foundation you need to succeed. Whether you're struggling with complex questions or just seeking a quick refresher, this guide will boost your understanding and confidence. Let’s tackle Number Base together and move one step closer to achieving your exam success! Blissful learning.
paragraph

Calculation problems on the laws of indices

paragraph
Question 1
Simplify: 23×242^3 \times 2^4.
Solution:
  1. Law: am×an=am+na^m \times a^n = a^{m+n}.
  2. 23×24=23+4=272^3 \times 2^4 = 2^{3+4} = 2^7.
  3. 27=1282^7 = 128.
Answer: 128128.

Question 2
Simplify: 56÷525^6 \div 5^2.
Solution:
  1. Law: am÷an=amna^m \div a^n = a^{m-n}.
  2. 56÷52=562=545^6 \div 5^2 = 5^{6-2} = 5^4.
  3. 54=6255^4 = 625
Answer: 625625.

Question 3
Simplify: (32)4(3^2)^4.
Solution:
  1. Law: (am)n=amn(a^m)^n = a^{m \cdot n}.
  2. (32)4=324=38(3^2)^4 = 3^{2 \cdot 4} = 3^8.
  3. 38=65613^8 = 6561.
Answer: 65616561.

Question 4
Simplify: 707^0.
Solution:
  1. Law: a0=1a^0 = 1, for any a0a \neq 0.
  2. 70=17^0 = 1.
Answer: 11.

Question 5
Simplify: 10310^{-3}.
Solution:
  1. Law: am=1ama^{-m} = \frac{1}{a^m}.
  2. 103=1103=1100010^{-3} = \frac{1}{10^3} = \frac{1}{1000}.
Answer: 11000\frac{1}{1000}.

Question 6
Simplify: 424^{-2}.
Solution:
  1. 42=142=1164^{-2} = \frac{1}{4^2} = \frac{1}{16}.
Answer: 116\frac{1}{16}.

Question 7
Simplify: (2332)2(2^3 \cdot 3^2)^2.
Solution:
  1. Law: (ambn)p=ampbnp(a^m \cdot b^n)^p = a^{m \cdot p} \cdot b^{n \cdot p}.
  2. (2332)2=232322=2634(2^3 \cdot 3^2)^2 = 2^{3 \cdot 2} \cdot 3^{2 \cdot 2} = 2^6 \cdot 3^4.
  3. 26=642^6 = 64, 34=813^4 = 81.
  4. 6481=518464 \cdot 81 = 5184.
Answer: 51845184.

Question 8
Simplify: 3533\frac{3^5}{3^3}.
Solution:
  1. Law: am÷an=amna^m \div a^n = a^{m-n}.
  2. 3533=353=32=9\frac{3^5}{3^3} = 3^{5-3} = 3^2 = 9.
Answer: 99.

Question 9
Simplify: (25)3(2 \cdot 5)^3.
Solution:
  1. Law: (ab)m=ambm(a \cdot b)^m = a^m \cdot b^m.
  2. (25)3=2353(2 \cdot 5)^3 = 2^3 \cdot 5^3.
  3. 23=82^3 = 8, 53=1255^3 = 125.
  4. 8125=10008 \cdot 125 = 1000.
Answer: 10001000.

Question 10
Simplify: 432223\frac{4^3 \cdot 2^2}{2^3}.
Solution:
  1. Simplify numerator: 43=(22)3=264^3 = (2^2)^3 = 2^6, so 2622=26+2=282^6 \cdot 2^2 = 2^{6+2} = 2^8.
  2. Divide: 2823=283=25=32\frac{2^8}{2^3} = 2^{8-3} = 2^5 = 32.
Answer: 3232.

Question 11
Simplify: (x3)4(x^3)^4.
Solution:
  1. Law: (am)n=amn(a^m)^n = a^{m \cdot n}.
  2. (x3)4=x34=x12(x^3)^4 = x^{3 \cdot 4} = x^{12}.
Answer: x12x^{12}.

Question 12
Simplify: (23)242\frac{(2^3)^2}{4^2}.
Solution:
  1. Numerator: (23)2=232=26(2^3)^2 = 2^{3 \cdot 2} = 2^6.
  2. Denominator: 42=(22)2=244^2 = (2^2)^2 = 2^4.
  3. 2624=264=22=4\frac{2^6}{2^4} = 2^{6-4} = 2^2 = 4.
Answer: 44.

Question 13
Simplify: x5x3x^5 \cdot x^{-3}.
Solution:
  1. Law: aman=am+na^m \cdot a^n = a^{m+n}.
  2. x5x3=x53=x2x^5 \cdot x^{-3} = x^{5-3} = x^2.
Answer: x2x^2.

Question 14
Simplify: y3y5\frac{y^{-3}}{y^{-5}}.
Solution:
  1. Law: am÷an=amna^m \div a^n = a^{m-n}.
  2. y3y5=y3(5)=y3+5=y2\frac{y^{-3}}{y^{-5}} = y^{-3 - (-5)} = y^{-3 + 5} = y^2.
Answer: y2y^2.

Question 15
Simplify: 1x2\frac{1}{x^{-2}}.
Solution:
  1. Law: am=1ama^{-m} = \frac{1}{a^m}.
  2. 1x2=x2\frac{1}{x^{-2}} = x^2.
Answer: x2x^2.

Question 16
Simplify: (3x2)3(3x^2)^3.
Solution:
  1. (3x2)3=33(x2)3(3x^2)^3 = 3^3 \cdot (x^2)^3.
  2. 33=273^3 = 27, (x2)3=x23=x6(x^2)^3 = x^{2 \cdot 3} = x^6.
  3. 27x627x^6.
Answer: 27x627x^6.

Question 17
Simplify: x3y4x2y2\frac{x^3 \cdot y^4}{x^2 \cdot y^2}.
Solution:
  1. Simplify x3÷x2=x32=xx^3 \div x^2 = x^{3-2} = x.
  2. Simplify y4÷y2=y42=y2y^4 \div y^2 = y^{4-2} = y^2.
  3. Result: xy2=xy2x \cdot y^2 = xy^2.
Answer: xy2xy^2.

Question 18
Simplify: 25÷(23)22^5 \div (2^3)^2.
Solution:
  1. Denominator: (23)2=232=26(2^3)^2 = 2^{3 \cdot 2} = 2^6.
  2. 25÷26=256=21=122^5 \div 2^6 = 2^{5-6} = 2^{-1} = \frac{1}{2}.
Answer: 12\frac{1}{2}.

Question 19
Simplify: (x3)4x8\frac{(x^3)^4}{x^8}.
Solution:
  1. Numerator: (x3)4=x34=x12(x^3)^4 = x^{3 \cdot 4} = x^{12}.
  2. Divide: x12x8=x128=x4\frac{x^{12}}{x^8} = x^{12-8} = x^4.
Answer: x4x^4.

Question 20
Simplify: (a2b3)2b4a3\frac{(a^2 b^3)^2}{b^4 a^3}.
Solution:
  1. Numerator: (a2b3)2=a22b32=a4b6(a^2 b^3)^2 = a^{2 \cdot 2} b^{3 \cdot 2} = a^4 b^6.
  2. Divide a4÷a3=a43=aa^4 \div a^3 = a^{4-3} = a.
  3. Divide b6÷b4=b64=b2b^6 \div b^4 = b^{6-4} = b^2.
  4. Result: ab2a b^2.
Answer: ab2a b^2.
paragraph

Calculation problems on equations involving indices

paragraph
Question 1
Solve for xx: 2x=162^x = 16.
Solution:
  1. Rewrite 1616 as 242^4: 2x=242^x = 2^4.
  2. Equate the powers: x=4x = 4.
Answer: x=4x = 4.

Question 2
Solve for xx: 5x+1=1255^{x+1} = 125.
Solution:
  1. Rewrite 125125 as 535^3: 5x+1=535^{x+1} = 5^3.
  2. Equate the powers: x+1=3x + 1 = 3.
  3. Solve: x=2x = 2.
Answer: x=2x = 2.

Question 3
Solve for xx: 32x=813^{2x} = 81.
Solution:
  1. Rewrite 8181 as 343^4: 32x=343^{2x} = 3^4.
  2. Equate the powers: 2x=42x = 4.
  3. Solve: x=2x = 2.
Answer: x=2x = 2.

Question 4
Solve for xx: 10x+2=100010^{x+2} = 1000.
Solution:
  1. Rewrite 10001000 as 10310^3: 10x+2=10310^{x+2} = 10^3.
  2. Equate the powers: x+2=3x + 2 = 3.
  3. Solve: x=1x = 1.
Answer: x=1x = 1.

Question 5
Solve for xx: 7x1=497^{x-1} = 49.
Solution:
  1. Rewrite 4949 as 727^2: 7x1=727^{x-1} = 7^2.
  2. Equate the powers: x1=2x - 1 = 2.
  3. Solve: x=3x = 3.
Answer: x=3x = 3.

Question 6
Solve for xx: 2x+3=252^{x+3} = 2^5.
Solution:
  1. Equate the powers: x+3=5x + 3 = 5.
  2. Solve: x=2x = 2.
Answer: x=2x = 2.

Question 7
Solve for xx: 9x=27x19^x = 27^{x-1}.
Solution:
  1. Rewrite 99 as 323^2 and 2727 as 333^3: (32)x=(33)x1(3^2)^x = (3^3)^{x-1}.
  2. Simplify: 32x=33x33^{2x} = 3^{3x - 3}.
  3. Equate the powers: 2x=3x32x = 3x - 3.
  4. Solve: x=3x = 3.
Answer: x=3x = 3.

Question 8
Solve for xx: 4x+2=644^{x+2} = 64.
Solution:
  1. Rewrite 6464 as 434^3: 4x+2=434^{x+2} = 4^3.
  2. Equate the powers: x+2=3x + 2 = 3.
  3. Solve: x=1x = 1.
Answer: x=1x = 1.

Question 9
Solve for xx: 3x1=1273^{x-1} = \frac{1}{27}.
Solution:
  1. Rewrite 127\frac{1}{27} as 333^{-3}: 3x1=333^{x-1} = 3^{-3}.
  2. Equate the powers: x1=3x - 1 = -3.
  3. Solve: x=2x = -2.
Answer: x=2x = -2.

Question 10
Solve for xx: 5x53=1255^x \cdot 5^3 = 125.
Solution:
  1. Combine: 5x+3=1255^{x+3} = 125.
  2. Rewrite 125125 as 535^3: 5x+3=535^{x+3} = 5^3.
  3. Equate the powers: x+3=3x + 3 = 3.
  4. Solve: x=0x = 0.
Answer: x=0x = 0.

Question 11
Solve for xx: 22x=322^{2x} = 32.
Solution:
  1. Rewrite 3232 as 252^5: 22x=252^{2x} = 2^5.
  2. Equate the powers: 2x=52x = 5.
  3. Solve: x=52x = \frac{5}{2}.
Answer: x=52x = \frac{5}{2}.

Question 12
Solve for xx: 6x2=366^{x-2} = 36.
Solution:
  1. Rewrite 3636 as 626^2: 6x2=626^{x-2} = 6^2.
  2. Equate the powers: x2=2x - 2 = 2.
  3. Solve: x=4x = 4.
Answer: x=4x = 4.

Question 13
Solve for xx: 8x+1=648^{x+1} = 64.
Solution:
  1. Rewrite 6464 as 828^2: 8x+1=828^{x+1} = 8^2.
  2. Equate the powers: x+1=2x + 1 = 2.
  3. Solve: x=1x = 1.
Answer: x=1x = 1.

Question 14
Solve for xx: 2x+3=162x2^{x+3} = 16 \cdot 2^x.
Solution:
  1. Rewrite 1616 as 242^4: 2x+3=242x2^{x+3} = 2^4 \cdot 2^x.
  2. Simplify: 2x+3=2x+42^{x+3} = 2^{x+4}.
  3. Equate the powers: x+3=x+4x + 3 = x + 4.
  4. No solution exists.
Answer: No solution.

Question 15
Solve for xx: 9x=1819^x = \frac{1}{81}.
Solution:
  1. Rewrite 8181 as 929^2: 9x=929^x = 9^{-2}.
  2. Equate the powers: x=2x = -2.
Answer: x=2x = -2.

Question 16
Solve for xx: (2x)2=64(2^x)^2 = 64.
Solution:
  1. Simplify: 22x=642^{2x} = 64.
  2. Rewrite 6464 as 262^6: 22x=262^{2x} = 2^6.
  3. Equate the powers: 2x=62x = 6.
  4. Solve: x=3x = 3.
Answer: x=3x = 3.

Question 17
Solve for xx: 32x34=273^{2x} \cdot 3^4 = 27.
Solution:
  1. Rewrite 2727 as 333^3: 32x+4=333^{2x+4} = 3^3.
  2. Equate the powers: 2x+4=32x + 4 = 3.
  3. Solve: 2x=12x = -1, x=12x = -\frac{1}{2}.
Answer: x=12x = -\frac{1}{2}.

Question 18
Solve for xx: 4x2x=8\frac{4^x}{2^x} = 8.
Solution:
  1. Rewrite 4x4^x as (22)x(2^2)^x: (22)x2x=8\frac{(2^2)^x}{2^x} = 8.
  2. Simplify: 22x2x=2x\frac{2^{2x}}{2^x} = 2^x.
  3. Solve: 2x=8=232^x = 8 = 2^3.
  4. Equate: x=3x = 3.
Answer: x=3x = 3.

Question 19
Solve for xx: 5x=6255^x = 625.
Solution:
  1. Rewrite 625625 as 545^4: 5x=545^x = 5^4.
  2. Equate the powers: x=4x = 4.
Answer: x=4x = 4.

Question 20
Solve for xx: 2x2=322^{x-2} = 32.
Solution:
  1. Rewrite 3232 as 252^5: 2x2=252^{x-2} = 2^5.
  2. Equate the powers: x2=5x - 2 = 5.
  3. Solve: x=7x = 7.
Answer: x=7x = 7.
paragraph

Calculation problems on standard form

paragraph
Question 1
Write 450,000450,000 in standard form.
Solution:
  1. Express 450,000450,000 as 4.5×1054.5 \times 10^5.
  2. Explanation: Move the decimal point 5 places to the left.
Answer: 4.5×1054.5 \times 10^5.

Question 2
Convert 0.000320.00032 to standard form.
Solution:
  1. Rewrite 0.000320.00032 as 3.2×1043.2 \times 10^{-4}.
  2. Explanation: Move the decimal point 4 places to the right.
Answer: 3.2×1043.2 \times 10^{-4}.

Question 3
Simplify and write (2×103)×(3×102)(2 \times 10^3) \times (3 \times 10^2) in standard form.
Solution:
  1. Multiply: 2×3=62 \times 3 = 6 and 103×102=103+2=10510^3 \times 10^2 = 10^{3+2} = 10^5.
  2. Final Answer: 6×1056 \times 10^5.
Answer: 6×1056 \times 10^5.

Question 4
Express 6×1042×102\frac{6 \times 10^4}{2 \times 10^2} in standard form.
Solution:
  1. Divide: 6÷2=36 \div 2 = 3 and 104÷102=1042=10210^4 \div 10^2 = 10^{4-2} = 10^2.
  2. Final Answer: 3×1023 \times 10^2.
Answer: 3×1023 \times 10^2.

Question 5
Write 7.2×1037.2 \times 10^{-3} as a decimal number.
Solution:
  1. Move the decimal point 3 places to the left: 0.00720.0072.
Answer: 0.00720.0072.

Question 6
Simplify: (5×106)+(3×106)(5 \times 10^6) + (3 \times 10^6).
Solution:
  1. Combine: 5+3=85 + 3 = 8.
  2. Result: 8×1068 \times 10^6.
Answer: 8×1068 \times 10^6.

Question 7
Convert 0.000000450.00000045 to standard form.
Solution:
  1. Rewrite 0.000000450.00000045 as 4.5×1074.5 \times 10^{-7}.
  2. Explanation: Move the decimal 7 places to the right.
Answer: 4.5×1074.5 \times 10^{-7}.

Question 8
Write 9,500,0009,500,000 in standard form.
Solution:
  1. Rewrite 9,500,0009,500,000 as 9.5×1069.5 \times 10^6.
Answer: 9.5×1069.5 \times 10^6.

Question 9
Simplify (8×105)×(4×102)(8 \times 10^{-5}) \times (4 \times 10^2) and write in standard form.
Solution:
  1. Multiply: 8×4=328 \times 4 = 32.
  2. Combine powers: 105×102=10310^{-5} \times 10^2 = 10^{-3}.
  3. Adjust: 32=3.2×10132 = 3.2 \times 10^1, so (3.2×101)×103=3.2×102(3.2 \times 10^1) \times 10^{-3} = 3.2 \times 10^{-2}.
Answer: 3.2×1023.2 \times 10^{-2}.

Question 10
Convert 1.23×1041.23 \times 10^4 to a standard number.
Solution:
  1. Move the decimal point 4 places to the right: 1230012300.
Answer: 1230012300.

Question 11
Express 0.00000080.0000008 in standard form.
Solution:
  1. Rewrite 0.00000080.0000008 as 8×1078 \times 10^{-7}.
Answer: 8×1078 \times 10^{-7}.

Question 12
Simplify: 4.5×1061.5×102\frac{4.5 \times 10^6}{1.5 \times 10^2}.
Solution:
  1. Divide: 4.5÷1.5=34.5 \div 1.5 = 3.
  2. Combine powers: 106÷102=1062=10410^6 \div 10^2 = 10^{6-2} = 10^4.
  3. Result: 3×1043 \times 10^4.
Answer: 3×1043 \times 10^4.

Question 13
Convert 650,000650,000 to standard form.
Solution:
  1. Rewrite 650,000650,000 as 6.5×1056.5 \times 10^5.
Answer: 6.5×1056.5 \times 10^5.

Question 14
Simplify (2×103)(1.5×103)(2 \times 10^3) - (1.5 \times 10^3).
Solution:
  1. Subtract coefficients: 21.5=0.52 - 1.5 = 0.5.
  2. Result: 0.5×103=5×1020.5 \times 10^3 = 5 \times 10^2.
Answer: 5×1025 \times 10^2.

Question 15
Write 0.000470.00047 in standard form.
Solution:
  1. Rewrite 0.000470.00047 as 4.7×1044.7 \times 10^{-4}.
Answer: 4.7×1044.7 \times 10^{-4}.
paragraph

Calculation problems involving laws of logarithms

paragraph
Question 1.
Simplify loga(mn)\log_a(mn) using the laws of logarithms.
Solution:
  1. Using the product rule: loga(mn)=logam+logan\log_a(mn) = \log_a m + \log_a n.

Question 2.
Simplify loga(mn)\log_a\left(\frac{m}{n}\right).**
Solution:
  1. Using the quotient rule: loga(mn)=logamlogan\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n.

Question 3.
Simplify loga(mn)\log_a(m^n).**
Solution:
  1. Using the power rule: loga(mn)=nlogam\log_a(m^n) = n \cdot \log_a m.

Question 4.
If log28=x\log_2 8 = x, find xx.
Solution:
  1. Rewrite in exponential form: 2x=82^x = 8.
  2. Solve x=3x = 3 since 23=82^3 = 8.

Question 5.
Express logab\log_a b in terms of logba\log_b a.
Solution:
  1. Using the change of base formula: logab=1logba\log_a b = \frac{1}{\log_b a}.

Question 6.
If log525=x\log_5 25 = x, find xx
Solution:
  1. Rewrite in exponential form: 5x=255^x = 25.
  2. Solve x=2x = 2 since 52=255^2 = 25.

Question 7.
Solve log327=x\log_3 27 = x.
Solution:
  1. Rewrite in exponential form: 3x=273^x = 27.
  2. Solve x=3x = 3 since 33=273^3 = 27.

Question 8.
Simplify 2logam+logan2 \log_a m + \log_a n.
Solution:
  1. Using the power rule: 2logam=loga(m2)2 \log_a m = \log_a(m^2).
  2. Combine: loga(m2)+logan=loga(m2n)\log_a(m^2) + \log_a n = \log_a(m^2 \cdot n).

Question 9.
Simplify logamlogan+logap\log_a m - \log_a n + \log_a p.
Solution:
  1. Combine terms: logamlogan=loga(mn)\log_a m - \log_a n = \log_a\left(\frac{m}{n}\right).
  2. Add logap\log_a p: loga(mn)+logap=loga(mpn)\log_a\left(\frac{m}{n}\right) + \log_a p = \log_a\left(\frac{m \cdot p}{n}\right).

Question 10.
Expand loga(x3y2z)\log_a\left(\frac{x^3y^2}{z}\right).
Solution:
  1. Using the quotient rule: loga(x3y2z)=loga(x3y2)logaz\log_a\left(\frac{x^3y^2}{z}\right) = \log_a(x^3y^2) - \log_a z.
  2. Using the product rule: loga(x3y2)=loga(x3)+loga(y2)\log_a(x^3y^2) = \log_a(x^3) + \log_a(y^2).
  3. Using the power rule: loga(x3)=3logax\log_a(x^3) = 3 \log_a x and loga(y2)=2logay\log_a(y^2) = 2 \log_a y.
  4. Combine: 3logax+2logaylogaz3 \log_a x + 2 \log_a y - \log_a z.

Question 11.
Solve logx81=4\log_x 81 = 4.
Solution:
  1. Rewrite in exponential form: x4=81x^4 = 81.
  2. Solve x=3x = 3 since 34=813^4 = 81.

Question 12.
Simplify logaa5\log_a a^5.
Solution:
  1. Using the power rule: logaa5=5logaa\log_a a^5 = 5 \cdot \log_a a.
  2. Since logaa=1\log_a a = 1, the result is 55.

Question 13.
Simplify log232log28\log_2 32 - \log_2 8.
Solution:
  1. Using the quotient rule: log232log28=log2(328)\log_2 32 - \log_2 8 = \log_2\left(\frac{32}{8}\right).
  2. Simplify 328=4\frac{32}{8} = 4: log24=2\log_2 4 = 2.

Question 14.
Solve log10x=2\log_10 x = 2.
Solution:
  1. Rewrite in exponential form: 102=x10^2 = x.
  2. Solve x=100x = 100.

Question 15.
Express log25\log_2 5 in terms of log102\log_{10} 2 and log105\log_{10} 5.
Solution:
  1. Using the change of base formula: log25=log105log102\log_2 5 = \frac{\log_{10} 5}{\log_{10} 2}.

Question 16.
Solve log3x+log3(x2)=1\log_3 x + \log_3(x - 2) = 1.
Solution:
  1. Combine logs: log3[x(x2)]=1\log_3[x(x - 2)] = 1.
  2. Rewrite in exponential form: 31=x(x2)3^1 = x(x - 2).
  3. Expand: 3=x22x3 = x^2 - 2x.
  4. Solve x22x3=0x^2 - 2x - 3 = 0: (x3)(x+1)=0(x - 3)(x + 1) = 0.
  5. Solutions: x=3x = 3 (valid), x=1x = -1 (invalid).

Question 17.
Simplify 3logax12logay3 \log_a x - \frac{1}{2} \log_a y.
Solution:
  1. Using the power rule: 3logax=loga(x3)3 \log_a x = \log_a(x^3), 12logay=loga(y1/2)\frac{1}{2} \log_a y = \log_a(y^{1/2}).
  2. Combine: loga(x3)loga(y1/2)\log_a(x^3) - \log_a(y^{1/2}) = loga(x3y)\log_a\left(\frac{x^3}{\sqrt{y}}\right).

Question 18.
If logab=2\log_a b = 2 and logac=3\log_a c = 3, find loga(b2c3)\log_a(b^2c^3).
Solution:
  1. Using the power rule: loga(b2c3)=2logab+3logac\log_a(b^2c^3) = 2 \log_a b + 3 \log_a c.
  2. Substitute: 2(2)+3(3)=4+9=132(2) + 3(3) = 4 + 9 = 13.

Question 19.
Solve 2log2x=52 \log_2 x = 5.
Solution:
  1. Simplify: log2x=52\log_2 x = \frac{5}{2}.
  2. Rewrite in exponential form: x=25/2x = 2^{5/2} = 32\sqrt{32} = 424\sqrt{2}.

Question 20.
Simplify log264+log24log28\log_2 64 + \log_2 4 - \log_2 8.
Solution:
  1. Combine terms: log264+log24=log2(644)=log2256\log_2 64 + \log_2 4 = \log_2(64 \cdot 4) = \log_2 256.
  2. Subtract log28\log_2 8: log2256log28=log2(2568)\log_2 256 - \log_2 8 = \log_2\left(\frac{256}{8}\right).
  3. Simplify 2568=32\frac{256}{8} = 32: log232=5\log_2 32 = 5.
    paragraph

Calculation problems involving change of bases in logarithm and application

paragraph
Question 1.
Rewrite log520\log_5 20 using the change of base formula.
Solution:
  1. Using the change of base formula: logab=logcblogca\log_a b = \frac{\log_c b}{\log_c a}.
  2. Rewrite: log520=log1020log105\log_5 20 = \frac{\log_{10} 20}{\log_{10} 5}.

Question 2.
Simplify log327\log_3 27 using the change of base formula
Solution:
  1. Rewrite using the change of base formula: log327=log1027log103\log_3 27 = \frac{\log_{10} 27}{\log_{10} 3}.
  2. Simplify: log10(33)log103=3log103log103=3\frac{\log_{10}(3^3)}{\log_{10} 3} = \frac{3 \cdot \log_{10} 3}{\log_{10} 3} = 3.

Question 3.
If log2103.32\log_2 10 \approx 3.32, approximate log410\log_4 10.
Solution:
  1. Use the formula logab=logcblogca\log_a b = \frac{\log_c b}{\log_c a}.
  2. Rewrite: log410=log210log24\log_4 10 = \frac{\log_2 10}{\log_2 4}.
  3. Substitute values: log24=2\log_2 4 = 2, so log410=3.3221.66\log_4 10 = \frac{3.32}{2} \approx 1.66.

Questjion 4.
Simplify log7343\log_7 343 using the change of base formula.
Solution:
  1. Rewrite: log7343=log10343log107\log_7 343 = \frac{\log_{10} 343}{\log_{10} 7}.
  2. Simplify: log10(73)=3log107log107=3\log_{10}(7^3) = \frac{3 \cdot \log_{10} 7}{\log_{10} 7} = 3.

Question 5.
Find log35\log_3 5 using log103=0.477\log_{10} 3 = 0.477 and log105=0.699\log_{10} 5 = 0.699.
Solution:
  1. Use the formula logab=logcblogca\log_a b = \frac{\log_c b}{\log_c a}.
  2. Rewrite: log35=log105log103\log_3 5 = \frac{\log_{10} 5}{\log_{10} 3}.
  3. Substitute values: log35=0.6990.4771.466\log_3 5 = \frac{0.699}{0.477} \approx 1.466.

Question 6.
Simplify log636\log_6 36 using the change of base formula.
Solution:
  1. Rewrite: log636=log1036log106\log_6 36 = \frac{\log_{10} 36}{\log_{10} 6}.
  2. Simplify: log10(62)log106=2log106log106=2\frac{\log_{10}(6^2)}{\log_{10} 6} = \frac{2 \cdot \log_{10} 6}{\log_{10} 6} = 2.

Question 7.
If log102=0.301\log_{10} 2 = 0.301, find log52\log_5 2.
Solution:
  1. Use logab=logcblogca\log_a b = \frac{\log_c b}{\log_c a}.
  2. Rewrite: log52=log102log105\log_5 2 = \frac{\log_{10} 2}{\log_{10} 5}.
  3. Substitute: $log_10 5 = 0.699 ,so, so \log_5 2 = \frac0.3010.699 \approx 0.431 $.

Question 8.
Find log864\log_8 64 using the change of base formula.
Solution:
  1. Rewrite: log864=log1064log108\log_8 64 = \frac{\log_{10} 64}{\log_{10} 8}.
  2. Simplify: log10(82)=2log108log108=2\log_{10}(8^2) = \frac{2 \cdot \log_{10} 8}{\log_{10} 8} = 2

Question 9.
Simplify log525\log_5 25 using change of base.
Solution:
  1. Rewrite: log525=log1025log105\log_5 25 = \frac{\log_{10} 25}{\log_{10} 5}.
  2. Simplify: log10(52)log105=2log105log105=2\frac{\log_{10}(5^2)}{\log_{10} 5} = \frac{2 \cdot \log_{10} 5}{\log_{10} 5} = 2.

Question 10.
Use the change of base formula to rewrite $ \log_4 32 .
Solution:
  1. Rewrite: log432=log1032log104\log_4 32 = \frac{\log_{10} 32}{\log_{10} 4}.

Question 11.
Solve log39\log_3 9.**
Solution:
  1. Rewrite: log39=log109log103\log_3 9 = \frac{\log_{10} 9}{\log_{10} 3}.
  2. Simplify: log10(32)log103=2log103log103=2\frac{\log_{10}(3^2)}{\log_{10} 3} = \frac{2 \cdot \log_{10} 3}{\log_{10} 3} = 2.

Question 12.
Evaluate log232\log_2 32 using the change of base formula.
Solution:
  1. Rewrite: log232=log1032log102\log_2 32 = \frac{\log_{10} 32}{\log_{10} 2}.
  2. Simplify: 32=2532 = 2^5, so 5log102log102=5\frac{5 \cdot \log_{10} 2}{\log_{10} 2} = 5.

Question 13.
Approximate log381\log_3 81 using log103=0.477\log_{10} 3 = 0.477 and log1081=1.908\log_{10} 81 = 1.908.
Solution:
  1. Rewrite: log381=log1081log103\log_3 81 = \frac{\log_{10} 81}{\log_{10} 3}.
  2. Substitute values: 1.9080.477=4\frac{1.908}{0.477} = 4.

Question 14.
If log102=0.301\log_{10} 2 = 0.301, find log42\log_4 2.
Solution:
  1. Rewrite: log42=log102log104\log_4 2 = \frac{\log_{10} 2}{\log_{10} 4}.
  2. Substitute: log104=2log102=0.602\log_{10} 4 = 2 \cdot \log_{10} 2 = 0.602.
  3. Solve: 0.3010.602=0.5\frac{0.301}{0.602} = 0.5.

Question 15.
Simplify log749\log_7 49.
Solution:
  1. Rewrite: log749=log1049log107\log_7 49 = \frac{\log_{10} 49}{\log_{10} 7}.
  2. Simplify: log10(72)=2log107log107=2\log_{10}(7^2) = \frac{2 \cdot \log_{10} 7}{\log_{10} 7} = 2.

Question 16.
Rewrite log816\log_8 16 using the change of base formula.
Solution:
  1. Rewrite: log816=log1016log108\log_8 16 = \frac{\log_{10} 16}{\log_{10} 8}.

Question 17.
Approximate log310\log_3 10 using log103=0.477\log_{10} 3 = 0.477 and log1010=1\log_{10} 10 = 1.
Solution:
  1. Rewrite: log310=log1010log103\log_3 10 = \frac{\log_{10} 10}{\log_{10} 3}.
  2. Substitute: 10.4772.096\frac{1}{0.477} \approx 2.096.

Question 18.
Solve log464\log_4 64.
Solution:
  1. Rewrite: log464=log1064log104\log_4 64 = \frac{\log_{10} 64}{\log_{10} 4}.
  2. Simplify: 64=4364 = 4^3, so 3log104log104=3\frac{3 \cdot \log_{10} 4}{\log_{10} 4} = 3.

Question 19.
Find log6216\log_6 216.
Solution:
  1. Rewrite: log6216=log10216log106\log_6 216 = \frac{\log_{10} 216}{\log_{10} 6}.
  2. Simplify: 216=63216 = 6^3, so log6216=3\log_6 216 = 3.

Question 20.
Simplify log5125\log_5 125.
Solution:
  1. Rewrite: log5125=log10125log105\log_5 125 = \frac{\log_{10} 125}{\log_{10} 5}.
  2. Simplify: log10(53)log105=3log105log105=3\frac{\log_{10}(5^3)}{\log_{10} 5} = \frac{3 \cdot \log_{10} 5}{\log_{10} 5} = 3.
    paragraph

Calculation problems involving simplification and rationalization of surds

paragraph
Question 1.
Simplify 50\sqrt{50}.
Solution:
  1. Factorize 50=25250 = 25 \cdot 2.
  2. 50=252=252\sqrt{50} = \sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2}.
  3. 50=52\sqrt{50} = 5\sqrt{2}.

Question 2.
Simplify 72\sqrt{72}.
Solution:
  1. Factorize 72=36272 = 36 \cdot 2.
  2. 72=362=362\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{36} \cdot \sqrt{2}.
  3. 72=62\sqrt{72} = 6\sqrt{2}.

Question 3.
Rationalize 13\frac{1}{\sqrt{3}}.
Solution:
  1. Multiply numerator and denominator by 3\sqrt{3}: 1333\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}.
  2. Result: 33\frac{\sqrt{3}}{3}.

Question 4.
Simplify 32+50\sqrt{32} + \sqrt{50}.
Solution:
  1. 32=42\sqrt{32} = 4\sqrt{2}, 50=52\sqrt{50} = 5\sqrt{2}.
  2. Combine: 42+52=924\sqrt{2} + 5\sqrt{2} = 9\sqrt{2}.

Question 5.
Simplify 1227\sqrt{12} - \sqrt{27}.
Solution:
  1. 12=23\sqrt{12} = 2\sqrt{3}, 27=33\sqrt{27} = 3\sqrt{3}.
  2. Combine: 2333=32\sqrt{3} - 3\sqrt{3} = -\sqrt{3}.

Question 6.
Rationalize 25\frac{2}{\sqrt{5}}.
Solution:
  1. Multiply numerator and denominator by 5\sqrt{5}: 2555\frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}.
  2. Result: 255\frac{2\sqrt{5}}{5}.

Question 7.
Rationalize 17+2\frac{1}{\sqrt{7} + 2}.
Solution:
  1. Multiply numerator and denominator by the conjugate: (72)(\sqrt{7} - 2).
  2. Numerator: 1(72)=721 \cdot (\sqrt{7} - 2) = \sqrt{7} - 2.
  3. Denominator: (7+2)(72)=74=3(\sqrt{7} + 2)(\sqrt{7} - 2) = 7 - 4 = 3.
  4. Result: 723\frac{\sqrt{7} - 2}{3}.

Question 8.
Simplify 188\sqrt{18} \cdot \sqrt{8}.
Solution:
  1. Combine: 188=188=144\sqrt{18} \cdot \sqrt{8} = \sqrt{18 \cdot 8} = \sqrt{144}.
  2. Result: 144=12\sqrt{144} = 12.

Question 9.
Rationalize 23\frac{\sqrt{2}}{\sqrt{3}}.**
Solution:
  1. Multiply numerator and denominator by 3\sqrt{3}: 2333\frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}.
  2. Result: 63\frac{\sqrt{6}}{3}.

Question 10.
Simplify 75+27\sqrt{75} + \sqrt{27}.
Solution:
  1. 75=53\sqrt{75} = 5\sqrt{3}, 27=33\sqrt{27} = 3\sqrt{3}.
  2. Combine: 53+33=835\sqrt{3} + 3\sqrt{3} = 8\sqrt{3}.

Question 11.
Rationalize 121\frac{1}{\sqrt{2} - 1}.
Solution:
  1. Multiply numerator and denominator by the conjugate: (2+1)(\sqrt{2} + 1).
  2. Numerator: 1(2+1)=2+11 \cdot (\sqrt{2} + 1) = \sqrt{2} + 1.
  3. Denominator: (21)(2+1)=21=1(\sqrt{2} - 1)(\sqrt{2} + 1) = 2 - 1 = 1.
  4. Result: 2+1\sqrt{2} + 1.

Question 12.
Simplify 2045\sqrt{20} \cdot \sqrt{45}.
Solution:
  1. Combine: 2045=2045=900\sqrt{20} \cdot \sqrt{45} = \sqrt{20 \cdot 45} = \sqrt{900}.
  2. Result: 900=30\sqrt{900} = 30.

Question 13.
Simplify 8+32\sqrt{8} + \sqrt{32}.
Solution:
  1. 8=22\sqrt{8} = 2\sqrt{2}, 32=42\sqrt{32} = 4\sqrt{2}.
  2. Combine: 22+42=622\sqrt{2} + 4\sqrt{2} = 6\sqrt{2}.

Question 14.
Rationalize 352\frac{\sqrt{3}}{\sqrt{5} - \sqrt{2}}.
Solution:
  1. Multiply numerator and denominator by the conjugate: (5+2)(\sqrt{5} + \sqrt{2}).
  2. Numerator: 3(5+2)=15+6\sqrt{3}(\sqrt{5} + \sqrt{2}) = \sqrt{15} + \sqrt{6}.
  3. Denominator: (52)(5+2)=52=3(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2}) = 5 - 2 = 3.
  4. Result: 15+63\frac{\sqrt{15} + \sqrt{6}}{3}.

Question 15.
Simplify 502\frac{\sqrt{50}}{\sqrt{2}}.
Solution:
  1. Combine: 502=502=25\frac{\sqrt{50}}{\sqrt{2}} = \sqrt{\frac{50}{2}} = \sqrt{25}.
  2. Result: 25=5\sqrt{25} = 5.

Question 16.
Rationalize 26\frac{2}{\sqrt{6}}.
Solution:
  1. Multiply numerator and denominator by 6\sqrt{6}: 2666\frac{2}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}.
  2. Result: 266=63\frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3}.

Question 17.
Simplify 2712\sqrt{27} \cdot \sqrt{12}.
Solution:
  1. Combine: 2712=2712=324\sqrt{27} \cdot \sqrt{12} = \sqrt{27 \cdot 12} = \sqrt{324}.
  2. Result: 324=18\sqrt{324} = 18.

Question 18.
Rationalize 37+2\frac{3}{\sqrt{7} + 2}.
Solution:
  1. Multiply numerator and denominator by the conjugate: (72)(\sqrt{7} - 2).
  2. Numerator: 3(72)=3763(\sqrt{7} - 2) = 3\sqrt{7} - 6.
  3. Denominator: (7+2)(72)=74=3(\sqrt{7} + 2)(\sqrt{7} - 2) = 7 - 4 = 3.
  4. Result: 72\sqrt{7} - 2.

Question 19.
Simplify 4515\frac{\sqrt{45}}{\sqrt{15}}.**
Solution:
  1. Combine: 4515=4515=3\frac{\sqrt{45}}{\sqrt{15}} = \sqrt{\frac{45}{15}} = \sqrt{3}.
  2. Result: 3\sqrt{3}.

Question 20.
Rationalize 515+2\frac{\sqrt{5} - 1}{\sqrt{5} + 2}.**
Solution:
  1. Multiply numerator and denominator by the conjugate: (52)(\sqrt{5} - 2).
  2. Numerator: (51)(52)=5255+2=735(\sqrt{5} - 1)(\sqrt{5} - 2) = 5 - 2\sqrt{5} - \sqrt{5} + 2 = 7 - 3\sqrt{5}.
  3. Denominator: (5+2)(52)=54=1(\sqrt{5} + 2)(\sqrt{5} - 2) = 5 - 4 = 1.
  4. Result: 7357 - 3\sqrt{5}.
paragraph
Thank you for taking the time to read my blog post! Your interest and engagement mean so much to me, and I hope the content provided valuable insights and sparked your curiosity. Your journey as a student is inspiring, and it’s my goal to contribute to your growth and success.
paragraph
If you found the post helpful, feel free to share it with others who might benefit. I’d also love to hear your thoughts, feedback, or questions—your input makes this space even better. Keep striving, learning, and achieving! 😊📚✨
paragraph

I recommend you check my Post on the following:

Share this post with your friends on social media if you learned something or was informed.

Leave a Reply
Your email address will not be published. Required fields are marked *

Save my name and email in this browser for the next time I comment.

Subscribe to our newsletter so you could get the latest post via E-mail

Recent Posts:


Jamb Mathematics - Lesson Notes on Probability for UTME Candidate
Jamb Mathematics - Lesson Notes on Permutation and Combination for UTME Candidate
Jamb Mathematics - Lesson Notes on Measure of Dispersion for UTME Candidate
Jamb Mathematics - Lesson Notes on Measure of Location for UTME Candidate

Stay Updated:

Like us on Facebook

Explore


Quick Links