Poscholars image

POSCHOLARS

Poscholars image
HomeOnline QuizWAEC/GCE/NECOJamb UpdatesScholarshipsPost UTMEStudy Guides

Jamb Mathematics - Lesson Notes on integration for UTME Candidate

Feb 15 2025 07:24 PM

Osason

Jamb Updates

Integration | Jamb Mathematics

paragraph
Hey scholar, it's time to gear up for your integration exam! Focus on mastering key concepts like definite and indefinite integrals, applications in area and volume, and advanced techniques like substitution and integration by parts. Stay sharp, practice plenty of problems, and remember—calculus is all about patterns, so train your intuition as much as your computation skills! 🚀📖
paragraph
Are you preparing for your JAMB Mathematics exam and feeling a bit uncertain about how to approach the topic of Integration? Don’t worry—you’re in the right place! This lesson is here to break it down in a simple, clear, and engaging way, helping you build the strong foundation you need to succeed. Whether you're struggling with complex questions or just seeking a quick refresher, this guide will boost your understanding and confidence. Let’s tackle Integration together and move one step closer to achieving your exam success! Blissful learning.
paragraph

Calculation problems involving Integration of explicit algebraic expression

paragraph
Problem 1: Basic Power Rule
Evaluate (3x45x3+2x7)dx\int (3x^4 - 5x^3 + 2x - 7) \,dx.
Solution:
  1. Apply the power rule:
    xndx=xn+1n+1+C\int x^n \,dx = \frac{x^{n+1}}{n+1} + C.
  2. Integrate term by term:
    3x4dx=3x55\int 3x^4 \,dx = \frac{3x^5}{5},
    5x3dx=5x44\int -5x^3 \,dx = \frac{-5x^4}{4},
    2xdx=2x22=x2\int 2x \,dx = \frac{2x^2}{2} = x^2,
    7dx=7x\int -7 \,dx = -7x.
  3. Final result:
    3x555x44+x27x+C\frac{3x^5}{5} - \frac{5x^4}{4} + x^2 - 7x + C.

Problem 2: Integral of a Binomial Expansion
Evaluate (x3+4x2x+6)dx\int (x^3 + 4x^2 - x + 6) \,dx.
Solution:
  1. Integrate each term: x3dx=x44\int x^3 \,dx = \frac{x^4}{4},
    4x2dx=4x33\int 4x^2 \,dx = \frac{4x^3}{3},
    xdx=x22\int -x \,dx = \frac{-x^2}{2},
    6dx=6x\int 6 \,dx = 6x.
  2. Final result:
    x44+4x33x22+6x+C\frac{x^4}{4} + \frac{4x^3}{3} - \frac{x^2}{2} + 6x + C.

Problem 3: Integral of a Rational Expression
Evaluate 6x24x+8xdx\int \frac{6x^2 - 4x + 8}{x} \,dx.
Solution:
  1. Rewrite the expression:
    (6x4+8x)dx\int (6x - 4 + \frac{8}{x}) \,dx.
  2. Integrate term by term: 6xdx=6x22=3x2\int 6x \,dx = \frac{6x^2}{2} = 3x^2,
    4dx=4x\int -4 \,dx = -4x,
    8xdx=8lnx\int \frac{8}{x} \,dx = 8 \ln |x|.
  3. Final result:
    3x24x+8lnx+C3x^2 - 4x + 8 \ln |x| + C.

Problem 4: Integral of a Fractional Power
Evaluate (x3/22x1/2)dx\int (x^{3/2} - 2x^{1/2}) \,dx.
Solution:
  1. Apply the power rule: xndx=xn+1n+1\int x^{n} \,dx = \frac{x^{n+1}}{n+1}.
  2. Integrate each term: x3/2dx=x5/25/2=25x5/2\int x^{3/2} \,dx = \frac{x^{5/2}}{5/2} = \frac{2}{5}x^{5/2},
    2x1/2dx=2×x3/23/2=43x3/2\int -2x^{1/2} \,dx = -2 \times \frac{x^{3/2}}{3/2} = -\frac{4}{3} x^{3/2}.
  3. Final result:
    25x5/243x3/2+C\frac{2}{5}x^{5/2} - \frac{4}{3}x^{3/2} + C.

Problem 5: Integral of a Sum of Roots
Evaluate (x+1x)dx\int (\sqrt{x} + \frac{1}{\sqrt{x}}) \,dx.
Solution:
  1. Rewrite as powers of x: (x1/2+x1/2)dx\int (x^{1/2} + x^{-1/2}) \,dx.
  2. Apply the power rule: x1/2dx=x3/23/2=23x3/2\int x^{1/2} \,dx = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2},
    x1/2dx=x1/21/2=2x1/2\int x^{-1/2} \,dx = \frac{x^{1/2}}{1/2} = 2x^{1/2}.
  3. Final result:
    23x3/2+2x1/2+C\frac{2}{3}x^{3/2} + 2x^{1/2} + C.

Problem 6: Integration by Substitution
Evaluate (2x+3)4dx\int (2x + 3)^4 \,dx.
Solution:
  1. Let u=2x+3u = 2x + 3, so du=2dxdu = 2dx.
  2. Rewrite integral:
    12u4du\frac{1}{2} \int u^4 \,du.
  3. Apply power rule:
    12×u55=u510\frac{1}{2} \times \frac{u^5}{5} = \frac{u^5}{10}.
  4. Substitute back u=2x+3u = 2x + 3.
  5. Final result:
    (2x+3)510+C\frac{(2x + 3)^5}{10} + C.

Problem 7: Integral of an Improper Rational Function
Evaluate x3+x2xxdx\int \frac{x^3 + x^2 - x}{x} \,dx.
Solution:
  1. Simplify:
    (x2+x1)dx\int (x^2 + x - 1) \,dx.
  2. Integrate each term: x2dx=x33\int x^2 \,dx = \frac{x^3}{3},
    xdx=x22\int x \,dx = \frac{x^2}{2},
    1dx=x\int -1 \,dx = -x.
  3. Final result:
    x33+x22x+C\frac{x^3}{3} + \frac{x^2}{2} - x + C.

Problem 8: Integral of a Product
Evaluate x(x+2)dx\int x(x + 2) \,dx.
Solution:
  1. Expand:
    (x2+2x)dx\int (x^2 + 2x) \,dx.
  2. Apply power rule: x2dx=x33\int x^2 \,dx = \frac{x^3}{3},
    2xdx=x2\int 2x \,dx = x^2.
  3. Final result:
    x33+x2+C\frac{x^3}{3} + x^2 + C.

Problem 9: Integral of a Quadratic Fraction
Evaluate xx2+4dx\int \frac{x}{x^2 + 4} \,dx.
Solution:
  1. Let u=x2+4u = x^2 + 4, then du=2xdxdu = 2x dx.
  2. Rewrite:
    12duu\frac{1}{2} \int \frac{du}{u}.
  3. Integrate:
    12lnu+C\frac{1}{2} \ln |u| + C.
  4. Substitute back u=x2+4u = x^2 + 4.
  5. Final result:
    12lnx2+4+C\frac{1}{2} \ln |x^2 + 4| + C.

Problem 10: Integral of a Polynomial with Negative Exponents
Evaluate (x3+5x22x1)dx\int (x^{-3} + 5x^{-2} - 2x^{-1}) \,dx.
Solution:
  1. Apply the power rule:
    xndx=xn+1n+1\int x^n \,dx = \frac{x^{n+1}}{n+1}, where n1n \neq -1.
  2. Integrate each term: x3dx=x22=12x2\int x^{-3} \,dx = \frac{x^{-2}}{-2} = -\frac{1}{2}x^{-2},
    5x2dx=5x11=5x1\int 5x^{-2} \,dx = \frac{5x^{-1}}{-1} = -5x^{-1},
    2x1dx=2lnx\int -2x^{-1} \,dx = -2 \ln |x|.
  3. Final result:
    12x25x12lnx+C-\frac{1}{2}x^{-2} - 5x^{-1} - 2\ln |x| + C.

Problem 11: Integral of a Cubic Polynomial
Evaluate (4x36x2+8x10)dx\int (4x^3 - 6x^2 + 8x - 10) \,dx.
Solution:
  1. Apply the power rule to each term: 4x3dx=4x44=x4\int 4x^3 \,dx = \frac{4x^4}{4} = x^4,
    6x2dx=6x33=2x3\int -6x^2 \,dx = \frac{-6x^3}{3} = -2x^3,
    8xdx=8x22=4x2\int 8x \,dx = \frac{8x^2}{2} = 4x^2,
    10dx=10x\int -10 \,dx = -10x.
  2. Final result:
    x42x3+4x210x+Cx^4 - 2x^3 + 4x^2 - 10x + C.

Problem 12: Integral Using Substitution
Evaluate (3x+5)2dx\int (3x + 5)^2 \,dx.
Solution:
  1. Let u=3x+5u = 3x + 5, so that du=3dxdx=du3du = 3dx \Rightarrow dx = \frac{du}{3}.
  2. Rewrite integral:
    (3x+5)2dx=u2du3=13u2du\int (3x + 5)^2 \,dx = \int u^2 \frac{du}{3} = \frac{1}{3} \int u^2 \,du.
  3. Apply power rule:
    13×u33=u39\frac{1}{3} \times \frac{u^3}{3} = \frac{u^3}{9}.
  4. Substitute back u=3x+5u = 3x + 5.
  5. Final result:
    (3x+5)39+C\frac{(3x + 5)^3}{9} + C.

Problem 13: Integral of a Rational Function with a Linear Denominator
Evaluate 4x+3dx\int \frac{4}{x + 3} \,dx.
Solution:
  1. Recognize the standard integral:
    1x+adx=lnx+a+C\int \frac{1}{x + a} \,dx = \ln |x + a| + C.
  2. Factor out constant:
    41x+3dx4 \int \frac{1}{x + 3} \,dx.
  3. Solve:
    4lnx+3+C4 \ln |x + 3| + C.
  4. Final result:
    4lnx+3+C4\ln |x + 3| + C.

Problem 14: Integral of a Square Root Expression
Evaluate 4x+1dx\int \sqrt{4x + 1} \,dx.
Solution:
  1. Let u=4x+1u = 4x + 1, so that du=4dxdu = 4dx.
  2. Rewrite integral:
    udu4=14u1/2du\int \sqrt{u} \frac{du}{4} = \frac{1}{4} \int u^{1/2} \,du.
  3. Apply power rule:
    14×u3/23/2=u3/26\frac{1}{4} \times \frac{u^{3/2}}{3/2} = \frac{u^{3/2}}{6}.
  4. Substitute back u=4x+1u = 4x + 1.
  5. Final result:
    (4x+1)3/26+C\frac{(4x + 1)^{3/2}}{6} + C.

Problem 15: Integral of a Logarithmic Function
Evaluate xlnxdx\int x \ln x \,dx.
Solution:
  1. Use integration by parts, where:
    u=lnxdu=dxxu = \ln x \Rightarrow du = \frac{dx}{x},
    dv=xdxv=x22dv = x dx \Rightarrow v = \frac{x^2}{2}.
  2. Apply the integration by parts formula:
    udv=uvvdu\int u dv = uv - \int v du.
  3. Compute:
    x22lnxx22×dxx\frac{x^2}{2} \ln x - \int \frac{x^2}{2} \times \frac{dx}{x}.
  4. Simplify:
    x22lnxx2dx\frac{x^2}{2} \ln x - \int \frac{x}{2} dx.
  5. Solve remaining integral:
    x22lnxx24+C\frac{x^2}{2} \ln x - \frac{x^2}{4} + C.
  6. Final result:
    x22lnxx24+C\frac{x^2}{2} \ln x - \frac{x^2}{4} + C.
paragraph

Calculation problem involving integration of trigonometric function

paragraph
Problem 1: Basic Sine Integration
Evaluate sinxdx\int \sin x \,dx.
Solution:
  1. Recall the basic integral:
    sinxdx=cosx+C\int \sin x \,dx = -\cos x + C.
  2. Final Answer:
    cosx+C-\cos x + C.

Problem 2: Basic Cosine Integration
Evaluate cosxdx\int \cos x \,dx.
Solution:
  1. Recall the basic integral:
    cosxdx=sinx+C\int \cos x \,dx = \sin x + C.
  2. Final Answer:
    sinx+C\sin x + C.

Problem 3: Integral of Tangent
Evaluate tanxdx\int \tan x \,dx.
Solution:
  1. Rewrite in terms of sine and cosine:
    sinxcosxdx\int \frac{\sin x}{\cos x} \,dx.
  2. Use substitution:
    Let u=cosxdu=sinxdxu = \cos x \Rightarrow du = -\sin x dx.
  3. Rewrite integral:
    duu=lnu+C-\int \frac{du}{u} = -\ln |u| + C.
  4. Substitute back u=cosxu = \cos x.
  5. Final Answer:
    lncosx+C-\ln |\cos x| + C.

Problem 4: Integral of Secant
Evaluate secxdx\int \sec x \,dx.
Solution:
  1. Use the standard formula:
    secxdx=lnsecx+tanx+C\int \sec x \,dx = \ln |\sec x + \tan x| + C.
  2. Final Answer:
    lnsecx+tanx+C\ln |\sec x + \tan x| + C.

Problem 5: Integral of Cosecant
Evaluate cscxdx\int \csc x \,dx.
Solution:
  1. Use the standard formula:
    cscxdx=lncscx+cotx+C\int \csc x \,dx = -\ln |\csc x + \cot x| + C.
  2. Final Answer:
    lncscx+cotx+C-\ln |\csc x + \cot x| + C.

Problem 6: Integral of Cotangent
Evaluate cotxdx\int \cot x \,dx.
Solution:
  1. Rewrite in terms of sine and cosine:
    cosxsinxdx\int \frac{\cos x}{\sin x} \,dx.
  2. Use substitution:
    Let u=sinxdu=cosxdxu = \sin x \Rightarrow du = \cos x dx.
  3. Rewrite integral:
    duu=lnu+C\int \frac{du}{u} = \ln |u| + C.
  4. Substitute back u=sinxu = \sin x.
  5. Final Answer:
    lnsinx+C\ln |\sin x| + C.

Problem 7: Integral of Sin Squared
Evaluate sin2xdx\int \sin^2 x \,dx.
Solution:
  1. Use identity:
    sin2x=1cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}.
  2. Rewrite integral:
    1cos2x2dx\int \frac{1 - \cos 2x}{2} \,dx.
  3. Integrate each term separately:
    12dx12cos2xdx\frac{1}{2} \int dx - \frac{1}{2} \int \cos 2x \,dx.
  4. Solve:
    x2sin2x4+C\frac{x}{2} - \frac{\sin 2x}{4} + C.
  5. Final Answer:
    x2sin2x4+C\frac{x}{2} - \frac{\sin 2x}{4} + C.

Problem 8: Integral of Cos Squared
Evaluate cos2xdx\int \cos^2 x \,dx.
Solution:
  1. Use identity:
    cos2x=1+cos2x2\cos^2 x = \frac{1 + \cos 2x}{2}.
  2. Rewrite integral:
    1+cos2x2dx\int \frac{1 + \cos 2x}{2} \,dx.
  3. Integrate each term separately:
    x2+sin2x4+C\frac{x}{2} + \frac{\sin 2x}{4} + C.
  4. Final Answer:
    x2+sin2x4+C\frac{x}{2} + \frac{\sin 2x}{4} + C.

Problem 9: Integral of Sin and Cos Product
Evaluate sinxcosxdx\int \sin x \cos x \,dx.
Solution:
  1. Use identity:
    sinxcosx=12sin2x\sin x \cos x = \frac{1}{2} \sin 2x.
  2. Rewrite integral:
    12sin2xdx\frac{1}{2} \int \sin 2x \,dx.
  3. Integrate:
    cos2x4+C\frac{-\cos 2x}{4} + C.
  4. Final Answer:
    cos2x4+C-\frac{\cos 2x}{4} + C.

Problem 10: Integral of Sec Squared
Evaluate sec2xdx\int \sec^2 x \,dx.
Solution:
  1. Recall the standard integral:
    sec2xdx=tanx+C\int \sec^2 x \,dx = \tan x + C.
  2. Final Answer:
    tanx+C\tan x + C.

Problem 11: Integral of Cosec Squared
Evaluate csc2xdx\int \csc^2 x \,dx.
Solution:
  1. Recall the standard integral:
    csc2xdx=cotx+C\int \csc^2 x \,dx = -\cot x + C.
  2. Final Answer:
    cotx+C-\cot x + C.

Problem 12: Integral of Sec x Tan x
Evaluate secxtanxdx\int \sec x \tan x \,dx.
Solution:
  1. Recall the standard integral:
    secxtanxdx=secx+C\int \sec x \tan x \,dx = \sec x + C.
  2. Final Answer:
    secx+C\sec x + C.

Problem 13: Integral of Cosec x Cot x
Evaluate cscxcotxdx\int \csc x \cot x \,dx.
Solution:
  1. Recall the standard integral:
    cscxcotxdx=cscx+C\int \csc x \cot x \,dx = -\csc x + C.
  2. Final Answer:
    cscx+C-\csc x + C.

Problem 14: Integral of Sine with Shifted Argument
Evaluate sin(3x+5)dx\int \sin (3x + 5) \,dx.
Solution:
  1. Use substitution:
    Let u=3x+5du=3dxu = 3x + 5 \Rightarrow du = 3dx.
  2. Rewrite:
    13sinudu\frac{1}{3} \int \sin u \,du.
  3. Solve:
    cosu3+C\frac{-\cos u}{3} + C.
  4. Substitute back u=3x+5u = 3x + 5.
  5. Final Answer:
    cos(3x+5)3+C-\frac{\cos (3x + 5)}{3} + C.

Problem 15: Integral of Cosine with Shifted Argument
Evaluate cos(4x2)dx\int \cos (4x - 2) \,dx.
Solution:
  1. Use substitution:
    Let u=4x2du=4dxu = 4x - 2 \Rightarrow du = 4dx.
  2. Rewrite:
    14cosudu\frac{1}{4} \int \cos u \,du.
  3. Solve:
    sinu4+C\frac{\sin u}{4} + C.
  4. Substitute back u=4x2u = 4x - 2.
  5. Final Answer:
    sin(4x2)4+C\frac{\sin (4x - 2)}{4} + C.
paragraph

Application problem involving area under the curve

paragraph
Problem 1: Area Under a Parabola
Find the area under the curve y=x2y = x^2 between x=0x = 0 and x=3x = 3.
Solution:
  1. The area is given by:
    A=03x2dxA = \int_0^3 x^2 \,dx.
  2. Integrate using the power rule:
    x2dx=x33\int x^2 \,dx = \frac{x^3}{3}.
  3. Evaluate from 00 to 33:
    [x33]03=333033=2730=9\left[ \frac{x^3}{3} \right]_0^3 = \frac{3^3}{3} - \frac{0^3}{3} = \frac{27}{3} - 0 = 9.
  4. Final Answer: 99 square units.

Problem 2: Area Under a Linear Function
Find the area under the curve y=4x+1y = 4x + 1 from x=1x = 1 to x=5x = 5.
Solution:
  1. The area is given by:
    A=15(4x+1)dxA = \int_1^5 (4x + 1) \,dx.
  2. Integrate each term separately:
    4xdx=2x2\int 4x \,dx = 2x^2,
    1dx=x\int 1 \,dx = x.
  3. Compute:
    [2x2+x]15=(2(5)2+5)(2(1)2+1)\left[ 2x^2 + x \right]_1^5 = (2(5)^2 + 5) - (2(1)^2 + 1).
  4. Simplify:
    (50+5)(2+1)=553=52(50 + 5) - (2 + 1) = 55 - 3 = 52.
  5. Final Answer: 5252 square units.

Problem 3: Area Between Two Curves
Find the area between y=x2y = x^2 and y=x+2y = x + 2 from x=1x = -1 to x=2x = 2.
Solution:
  1. Compute the area using:
    A=12[(x+2)x2]dxA = \int_{-1}^{2} [(x+2) - x^2] \,dx.
  2. Integrate each term:
    xdx=x22\int x \,dx = \frac{x^2}{2},
    2dx=2x\int 2 \,dx = 2x,
    x2dx=x33\int x^2 \,dx = \frac{x^3}{3}.
  3. Compute:
    [x22+2xx33]12\left[ \frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{-1}^{2}.
  4. Evaluate at x=2x = 2 and x=1x = -1 and subtract.
  5. Final Answer: 92\frac{9}{2} square units.

Problem 4: Area Under an Absolute Value Function
Find the area under y=x1y = |x - 1| from x=1x = -1 to x=3x = 3.
Solution:
  1. Break into two cases:
    • For x<1x < 1, y=(x1)=x+1y = -(x - 1) = -x + 1.
    • For x1x \geq 1, y=x1y = x - 1.
  2. Compute the areas separately:
    A1=11(x+1)dxA_1 = \int_{-1}^{1} (-x + 1) \,dx,
    A2=13(x1)dxA_2 = \int_{1}^{3} (x - 1) \,dx.
  3. Evaluate and sum.
  4. Final Answer: 44 square units.

Problem 5: Area Under a Trigonometric Curve
Find the area under y=sinxy = \sin x from x=0x = 0 to x=πx = \pi.
Solution:
  1. Compute:
    A=0πsinxdxA = \int_0^\pi \sin x \,dx.
  2. Integrate:
    sinxdx=cosx\int \sin x \,dx = -\cos x.
  3. Evaluate:
    [cosx]0π=(cosπ)(cos0)[-\cos x]_0^\pi = (-\cos \pi) - (-\cos 0).
  4. Simplify:
    ((1))(1)=1+1=2(-(-1)) - (-1) = 1 + 1 = 2.
  5. Final Answer: 22 square units.

Problem 6: Area Enclosed by a Quadratic and a Line
Find the area enclosed by y=x2y = x^2 and y=2xy = 2x.
Solution:
  1. Find points of intersection:
    Solve x2=2xx22x=0x(x2)=0x^2 = 2x \Rightarrow x^2 - 2x = 0 \Rightarrow x(x - 2) = 0.
    So, x=0,2x = 0, 2.
  2. Compute area:
    A=02(2xx2)dxA = \int_0^2 (2x - x^2) \,dx.
  3. Integrate and evaluate.
  4. Final Answer: 43\frac{4}{3} square units.

Problem 7: Area Under an Exponential Curve
Find the area under y=exy = e^x from x=0x = 0 to x=2x = 2.
Solution:
  1. Compute:
    A=02exdxA = \int_0^2 e^x \,dx.
  2. Integrate:
    exdx=ex\int e^x \,dx = e^x.
  3. Evaluate:
    [ex]02=e2e0=e21[e^x]_0^2 = e^2 - e^0 = e^2 - 1.
  4. Final Answer: e21e^2 - 1 square units.

Problem 8: Area Under a Rational Function
Find the area under y=1xy = \frac{1}{x} from x=1x = 1 to x=4x = 4.
Solution:
  1. Compute:
    A=141xdxA = \int_1^4 \frac{1}{x} \,dx.
  2. Integrate:
    1xdx=lnx\int \frac{1}{x} \,dx = \ln |x|.
  3. Evaluate:
    [lnx]14=ln4ln1[\ln |x|]_1^4 = \ln 4 - \ln 1.
  4. Simplify:
    ln40=ln4\ln 4 - 0 = \ln 4.
  5. Final Answer: ln4\ln 4 square units.

Problem 9: Area Between a Sine and a Cosine Curve
Find the area between y=sinxy = \sin x and y=cosxy = \cos x from x=0x = 0 to x=π4x = \frac{\pi}{4}.
Solution:
  1. Compute:
    A=0π/4(cosxsinx)dxA = \int_0^{\pi/4} (\cos x - \sin x) \,dx.
  2. Integrate:
    cosxdx=sinx\int \cos x \,dx = \sin x,
    sinxdx=cosx\int \sin x \,dx = -\cos x.
  3. Evaluate and simplify.
  4. Final Answer: 22\frac{\sqrt{2}}{2} square units.

Problem 10: Area Under a Polynomial Function
Find the area under the curve y=x32x+1y = x^3 - 2x + 1 from x=1x = -1 to x=2x = 2.
Solution:
  1. Compute:
    A=12(x32x+1)dxA = \int_{-1}^{2} (x^3 - 2x + 1) \,dx.
  2. Integrate term by term:
    • x3dx=x44\int x^3 \,dx = \frac{x^4}{4},
    • 2xdx=x2\int -2x \,dx = -x^2,
    • 1dx=x\int 1 \,dx = x.
  3. Evaluate from 1-1 to 22: [x44x2+x]12\left[ \frac{x^4}{4} - x^2 + x \right]_{-1}^{2}
  4. Compute values at x=2x = 2 and x=1x = -1 and subtract.
  5. Final Answer: 354\frac{35}{4} square units.

Problem 11: Area Under an Exponential Function
Find the area under the curve y=3e2xy = 3e^{2x} from x=0x = 0 to x=1x = 1.
Solution:
  1. Compute:
    A=013e2xdxA = \int_0^1 3e^{2x} \,dx.
  2. Use substitution:
    Let u=2xu = 2x, then du=2dxdu = 2dx.
  3. Solve integral:
    3e2xdx=32e2x\int 3e^{2x} \,dx = \frac{3}{2} e^{2x}.
  4. Evaluate:
    [32e2x]01\left[ \frac{3}{2} e^{2x} \right]_0^1.
  5. Compute values:
    32(e2e0)=32(e21)\frac{3}{2} (e^2 - e^0) = \frac{3}{2} (e^2 - 1).
  6. Final Answer: 32(e21)\frac{3}{2} (e^2 - 1) square units.

Problem 12: Area Enclosed by a Parabola and a Line
Find the area enclosed by y=x2y = x^2 and y=4xy = 4x.
Solution:
  1. Find intersection points:
    • Solve x2=4xx^2 = 4x,
    • x24x=0x^2 - 4x = 0,
    • x(x4)=0x(x - 4) = 0, so x=0,4x = 0, 4.
  2. Compute area:
    A=04(4xx2)dxA = \int_0^4 (4x - x^2) \,dx.
  3. Integrate:
    • 4xdx=2x2\int 4x \,dx = 2x^2,
    • x2dx=x33\int -x^2 \,dx = -\frac{x^3}{3}.
  4. Evaluate from 00 to 44.
  5. Final Answer: 323\frac{32}{3} square units.

Problem 13: Area Between Two Trigonometric Curves
Find the area between y=cosxy = \cos x and y=sinxy = \sin x from x=0x = 0 to x=π2x = \frac{\pi}{2}.
Solution:
  1. Compute area:
    A=0π/2(cosxsinx)dxA = \int_0^{\pi/2} (\cos x - \sin x) \,dx.
  2. Integrate:
    • cosxdx=sinx\int \cos x \,dx = \sin x,
    • sinxdx=cosx\int \sin x \,dx = -\cos x.
  3. Evaluate from 00 to π2\frac{\pi}{2}.
  4. Compute values:
    (sinπ2(cosπ2))(sin0(cos0))(\sin \frac{\pi}{2} - (-\cos \frac{\pi}{2})) - (\sin 0 - (-\cos 0)).
  5. Final Answer: 11 square unit.

Problem 14: Area Enclosed by a Square Root Function
Find the area under y=xy = \sqrt{x} from x=1x = 1 to x=4x = 4.
Solution:
  1. Compute:
    A=14xdxA = \int_1^4 \sqrt{x} \,dx.
  2. Rewrite as exponent:
    A=14x1/2dxA = \int_1^4 x^{1/2} \,dx.
  3. Integrate using the power rule:
    xndx=xn+1n+1\int x^{n} \,dx = \frac{x^{n+1}}{n+1}.
  4. Compute:
    • x1/2dx=x3/23/2=23x3/2\int x^{1/2} \,dx = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2}.
  5. Evaluate: [23x3/2]14\left[ \frac{2}{3} x^{3/2} \right]_1^4.
  6. Compute values at x=4x = 4 and x=1x = 1, then subtract.
  7. Final Answer: 143\frac{14}{3} square units.

Problem 15: Area Under a Rational Function
Find the area under y=2x2y = \frac{2}{x^2} from x=1x = 1 to x=3x = 3.
Solution:
  1. Compute:
    A=132x2dxA = \int_1^3 \frac{2}{x^2} \,dx.
  2. Rewrite as exponent:
    A=132x2dxA = \int_1^3 2x^{-2} \,dx.
  3. Use power rule:
    xndx=xn+1n+1\int x^n \,dx = \frac{x^{n+1}}{n+1}.
  4. Compute:
    • 2x2dx=2×x11=2x\int 2x^{-2} \,dx = 2 \times \frac{x^{-1}}{-1} = -\frac{2}{x}.
  5. Evaluate: [2x]13\left[ -\frac{2}{x} \right]_1^3.
  6. Compute values at x=3x = 3 and x=1x = 1, then subtract.
  7. Final Answer: 43\frac{4}{3} square units.

paragraph
Thank you for taking the time to read my blog post! Your interest and engagement mean so much to me, and I hope the content provided valuable insights and sparked your curiosity. Your journey as a student is inspiring, and it’s my goal to contribute to your growth and success.
paragraph
If you found the post helpful, feel free to share it with others who might benefit. I’d also love to hear your thoughts, feedback, or questions—your input makes this space even better. Keep striving, learning, and achieving! 😊📚✨
paragraph

I recommend you check my Post on the following:

Share this post with your friends on social media if you learned something or was informed.

Leave a Reply
Your email address will not be published. Required fields are marked *

Save my name and email in this browser for the next time I comment.

Subscribe to our newsletter so you could get the latest post via E-mail

Recent Posts:


Jamb Mathematics - Lesson Notes on Probability for UTME Candidate
Jamb Mathematics - Lesson Notes on Permutation and Combination for UTME Candidate
Jamb Mathematics - Lesson Notes on Measure of Dispersion for UTME Candidate
Jamb Mathematics - Lesson Notes on Measure of Location for UTME Candidate

Stay Updated:

Like us on Facebook

Explore


Quick Links