Poscholars image

POSCHOLARS

Poscholars image
HomeOnline QuizWAEC/GCE/NECOJamb UpdatesScholarshipsPost UTMEStudy Guides

Jamb Mathematics - Lesson Notes on Matrices and Determinant for UTME Candidate

Feb 12 2025 08:26 PM

Osason

Jamb Updates

Matrices and Determinants | Jamb Mathematics

paragraph
Dear student, as you prepare for your upcoming exam on matrices and determinants, take heart and approach your studies with confidence and diligence. Just as every element in a matrix has its place and purpose, so too does each step in your preparation bring you closer to clarity and success. Trust in the work you have done, seek understanding beyond memorization, and know that you are more capable than you realize—steady yourself, and move forward with faith.
paragraph
Are you preparing for your JAMB Mathematics exam and feeling a bit uncertain about how to approach the topic of Matrices and Determinants? Don’t worry—you’re in the right place! This lesson is here to break it down in a simple, clear, and engaging way, helping you build the strong foundation you need to succeed. Whether you're struggling with complex questions or just seeking a quick refresher, this guide will boost your understanding and confidence. Let’s tackle Matrices and Determinants together and move one step closer to achieving your exam success! Blissful learning.
paragraph

Calculation problems involving basic operation on matrices

paragraph
1. Matrix Addition
Question: Compute A+BA + B for
A=[2351]A = \begin{bmatrix} 2 & 3 \\ 5 & 1 \end{bmatrix},
B=[4123]B = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}.
Solution:
A+B=[2+43+15+21+3]=[6474]A + B = \begin{bmatrix} 2+4 & 3+1 \\ 5+2 & 1+3 \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ 7 & 4 \end{bmatrix}.

2. Matrix Subtraction
Question: Compute ABA - B for
A=[7564]A = \begin{bmatrix} 7 & 5 \\ 6 & 4 \end{bmatrix},
B=[3216]B = \begin{bmatrix} 3 & 2 \\ 1 & 6 \end{bmatrix}.
Solution:
AB=[73526146]=[4352]A - B = \begin{bmatrix} 7-3 & 5-2 \\ 6-1 & 4-6 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 5 & -2 \end{bmatrix}.

3. Scalar Multiplication
Question: Compute 3A3A for
A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.
Solution:
3A=3×[1234]=[36912]3A = 3 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}.

4. Matrix Multiplication
Question: Compute ABAB for
A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},
B=[5678]B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}.
Solution:
AB=[1(5)+2(7)1(6)+2(8)3(5)+4(7)3(6)+4(8)]AB = \begin{bmatrix} 1(5) + 2(7) & 1(6) + 2(8) \\ 3(5) + 4(7) & 3(6) + 4(8) \end{bmatrix}
=[5+146+1615+2818+32]= \begin{bmatrix} 5+14 & 6+16 \\ 15+28 & 18+32 \end{bmatrix}
=[19224350]= \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}.

5. Determinant of a 2x2 Matrix
Question: Compute det(A)\det(A) for
A=[4325]A = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}.
Solution:
det(A)=(4)(5)(3)(2)=206=14\det(A) = (4)(5) - (3)(2) = 20 - 6 = 14.

6. Determinant of a 3x3 Matrix
Question: Compute det(A)\det(A) for
A=[123456789]A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.
Solution:
Using cofactor expansion along the first row:
det(A)=1568924679+34578\det(A) = 1 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}.
Expanding further:
=1(5×96×8)2(4×96×7)+3(4×85×7)= 1(5 \times 9 - 6 \times 8) - 2(4 \times 9 - 6 \times 7) + 3(4 \times 8 - 5 \times 7)
=1(4548)2(3642)+3(3235)= 1(45 - 48) - 2(36 - 42) + 3(32 - 35)
=1(3)2(6)+3(3)= 1(-3) - 2(-6) + 3(-3)
=3+129=0= -3 + 12 - 9 = 0.

7. Inverse of a 2x2 Matrix
Question: Compute A1A^{-1} for
A=[2314]A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.
Solution:
A1=1det(A)[dbca]A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
det(A)=2(4)3(1)=83=5\det(A) = 2(4) - 3(1) = 8 - 3 = 5.
A1=15[4312]=[45351525]A^{-1} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{bmatrix}.

8. Transpose of a Matrix
Question: Compute ATA^T for
A=[123456]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}.
Solution:
AT=[135246]A^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}.

9. Matrix Trace
Question: Compute tr(A)\text{tr}(A) for
A=[5216]A = \begin{bmatrix} 5 & 2 \\ 1 & 6 \end{bmatrix}.
Solution:
tr(A)=5+6=11\text{tr}(A) = 5 + 6 = 11.

10. Identity Matrix Multiplication
Question: Compute AIAI for
A=[3456]A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix},
I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
Solution:
AI=AAI = A, since multiplying by the identity matrix leaves the matrix unchanged.

11. Multiplication of a Row Vector and a Column Vector
Question: Compute ABAB where
A=[123]A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix},
B=[456]B = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}.
Solution:
AB=1(4)+2(5)+3(6)=4+10+18=32AB = 1(4) + 2(5) + 3(6) = 4 + 10 + 18 = 32.

12. Multiplication of a Column Vector and a Row Vector
Question: Compute ABAB where
A=[123]A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix},
B=[456]B = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}.
Solution:
AB=[1(4)1(5)1(6)2(4)2(5)2(6)3(4)3(5)3(6)]=[45681012121518]AB = \begin{bmatrix} 1(4) & 1(5) & 1(6) \\ 2(4) & 2(5) & 2(6) \\ 3(4) & 3(5) & 3(6) \end{bmatrix} = \begin{bmatrix} 4 & 5 & 6 \\ 8 & 10 & 12 \\ 12 & 15 & 18 \end{bmatrix}.

13. Zero Matrix Multiplication
Question: Compute A0A \cdot 0 where
A=[2356]A = \begin{bmatrix} 2 & 3 \\ 5 & 6 \end{bmatrix}
and 00 is the zero matrix.
Solution:
A0=[0000]A \cdot 0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.

14. Power of a Square Matrix
Question: Compute A2A^2 where
A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.
Solution:
A2=AA=[1(1)+2(3)1(2)+2(4)3(1)+4(3)3(2)+4(4)]A^2 = A \cdot A = \begin{bmatrix} 1(1) + 2(3) & 1(2) + 2(4) \\ 3(1) + 4(3) & 3(2) + 4(4) \end{bmatrix}
=[1+62+83+126+16]=[7101522]= \begin{bmatrix} 1 + 6 & 2 + 8 \\ 3 + 12 & 6 + 16 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}.

Solving for a Matrix Variable
Question: Find XX in the equation
AX=BAX = B, where
A=[2345]A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix},
B=[818]B = \begin{bmatrix} 8 \\ 18 \end{bmatrix}.
Solution:
Let X=[xy]X = \begin{bmatrix} x \\ y \end{bmatrix}. Then,
[2345][xy]=[818]\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 18 \end{bmatrix}.
Solving:
2x+3y=82x + 3y = 8
4x+5y=184x + 5y = 18.
By elimination:
Multiply the first equation by 2:
4x+6y=164x + 6y = 16.
Subtract from the second equation:
(4x+5y)(4x+6y)=1816(4x + 5y) - (4x + 6y) = 18 - 16
y=2y=2- y = 2 \Rightarrow y = -2.
Substituting y=2y = -2 into 2x+3y=82x + 3y = 8:
2x+3(2)=82x + 3(-2) = 8
2x6=82x - 6 = 8
2x=14x=72x = 14 \Rightarrow x = 7.
Thus, X=[72]X = \begin{bmatrix} 7 \\ -2 \end{bmatrix}.

16. Rank of a Matrix
Question: Find the rank of
A=[123456789]A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.
Solution:
Reducing to row echelon form:
[123456789][1230360612][123036000]\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}.
Rank = 2 (two nonzero rows).

17. Eigenvalues of a 2x2 Matrix
Question: Find eigenvalues of
A=[2112]A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.
Solution:
Solve det(AλI)=0\det(A - \lambda I) = 0:
det[2λ112λ]=0\det \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = 0.
(2λ)(2λ)(1)(1)=0(2 - \lambda)(2 - \lambda) - (1)(1) = 0.
λ24λ+3=0\lambda^2 - 4\lambda + 3 = 0.
(λ3)(λ1)=0(\lambda - 3)(\lambda - 1) = 0.
Eigenvalues: λ=3,1\lambda = 3, 1.

18. Matrix Diagonalization
Question: Is A=[3002]A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} diagonalizable?
Solution:
Since AA is already diagonal, it is trivially diagonalizable.

19. Orthogonality of Two Vectors
Question: Are A=[11]A = \begin{bmatrix} 1 \\ -1 \end{bmatrix} and B=[22]B = \begin{bmatrix} 2 \\ 2 \end{bmatrix} orthogonal?
Solution:
Compute AB=1(2)+(1)(2)=22=0A \cdot B = 1(2) + (-1)(2) = 2 - 2 = 0.
Since the dot product is zero, the vectors are orthogonal.

20. Projection of One Vector onto Another
Question: Find the projection of A=[34]A = \begin{bmatrix} 3 \\ 4 \end{bmatrix} onto B=[10]B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
Solution:
projBA=ABBBB\text{proj}_B A = \frac{A \cdot B}{B \cdot B} B.
=3(1)+4(0)1(1)+0(0)[10]=3[10]=[30]= \frac{3(1) + 4(0)}{1(1) + 0(0)} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}.
paragraph

Calculation problems involving determinant of matrices

paragraph
1. Basic Determinant Calculation
Question: Compute det(A)\det(A) for
A=[2314]A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.
Solution:
Using the determinant formula for a 2×22 \times 2 matrix:
det(A)=(2)(4)(3)(1)\det(A) = (2)(4) - (3)(1)
=83= 8 - 3
=5= 5.

2. Determinant with Negative Entries
Question: Compute det(A)\det(A) for
A=[1523]A = \begin{bmatrix} -1 & 5 \\ 2 & -3 \end{bmatrix}.
Solution:
det(A)=(1)(3)(5)(2)\det(A) = (-1)(-3) - (5)(2)
=310= 3 - 10
=7= -7.

3. Determinant with Zeroes
Question: Compute det(A)\det(A) for
A=[0470]A = \begin{bmatrix} 0 & 4 \\ 7 & 0 \end{bmatrix}.
Solution:
det(A)=(0)(0)(4)(7)\det(A) = (0)(0) - (4)(7)
=028= 0 - 28
=28= -28.

4. Determinant of Identity Matrix
Question: Compute det(A)\det(A) for
A=[1001]A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
Solution:
det(A)=(1)(1)(0)(0)\det(A) = (1)(1) - (0)(0)
=10= 1 - 0
=1= 1.

5. Determinant of a Scalar Multiple of Identity
Question: Compute det(A)\det(A) for
A=[3003]A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}.
Solution:
det(A)=(3)(3)(0)(0)\det(A) = (3)(3) - (0)(0)
=90= 9 - 0
=9= 9.

6. Determinant Involving Fractions
Question: Compute det(A)\det(A) for
A=[12132534]A = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} \\ \frac{2}{5} & \frac{3}{4} \end{bmatrix}.
Solution:
det(A)=(12×34)(13×25)\det(A) = \left(\frac{1}{2} \times \frac{3}{4} \right) - \left(\frac{1}{3} \times \frac{2}{5} \right)
=38215= \frac{3}{8} - \frac{2}{15}.
Find a common denominator (120):
=4512016120= \frac{45}{120} - \frac{16}{120}
=29120= \frac{29}{120}.

7. Determinant of a Singular Matrix
Question: Compute det(A)\det(A) for
A=[6923]A = \begin{bmatrix} 6 & 9 \\ 2 & 3 \end{bmatrix}.
Solution:
det(A)=(6)(3)(9)(2)\det(A) = (6)(3) - (9)(2)
=1818= 18 - 18
=0= 0.
(Since the determinant is zero, this is a singular matrix and does not have an inverse.)

8. Determinant with Large Numbers
Question: Compute det(A)\det(A) for
A=[100254010]A = \begin{bmatrix} 100 & 25 \\ 40 & 10 \end{bmatrix}.
Solution:
det(A)=(100)(10)(25)(40)\det(A) = (100)(10) - (25)(40)
=10001000= 1000 - 1000
=0= 0.
(This matrix is also singular.)

9. Determinant with Negative and Positive Numbers
Question: Compute det(A)\det(A) for
A=[4756]A = \begin{bmatrix} -4 & 7 \\ 5 & -6 \end{bmatrix}.
Solution:
det(A)=(4)(6)(7)(5)\det(A) = (-4)(-6) - (7)(5)
=2435= 24 - 35
=11= -11.

10. Determinant of a Matrix with Equal Rows
Question: Compute det(A)\det(A) for
A=[2323]A = \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}.
Solution:
det(A)=(2)(3)(3)(2)\det(A) = (2)(3) - (3)(2)
=66= 6 - 6
=0= 0.
paragraph

Calculation problems involving inverse of a matrix

paragraph
1. Basic Inverse Calculation
Question: Compute A1A^{-1} for
A=[2314]A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.
Solution:
The inverse of a 2×22 \times 2 matrix A=[abcd]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} is given by:
A1=1det(A)[dbca]A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
First, compute det(A)\det(A):
det(A)=(2)(4)(3)(1)=83=5\det(A) = (2)(4) - (3)(1) = 8 - 3 = 5.
Now, compute A1A^{-1}:
A1=15[4312]A^{-1} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}
=[45351525]= \begin{bmatrix} \frac{4}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{bmatrix}.

2. Inverse with Negative Entries
Question: Compute A1A^{-1} for
A=[2534]A = \begin{bmatrix} -2 & 5 \\ 3 & -4 \end{bmatrix}.
Solution:
Compute det(A)\det(A):
det(A)=(2)(4)(5)(3)=815=7\det(A) = (-2)(-4) - (5)(3) = 8 - 15 = -7.
Now, compute A1A^{-1}:
A1=17[4532]A^{-1} = \frac{1}{-7} \begin{bmatrix} -4 & -5 \\ -3 & -2 \end{bmatrix}
=[47573727]= \begin{bmatrix} \frac{4}{7} & \frac{5}{7} \\ \frac{3}{7} & \frac{2}{7} \end{bmatrix}.

3. Inverse of a Matrix with Fractions
Question: Compute A1A^{-1} for
A=[12132534]A = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} \\ \frac{2}{5} & \frac{3}{4} \end{bmatrix}.
Solution:
Compute det(A)\det(A):
det(A)=(12×34)(13×25)\det(A) = \left(\frac{1}{2} \times \frac{3}{4}\right) - \left(\frac{1}{3} \times \frac{2}{5}\right)
=38215= \frac{3}{8} - \frac{2}{15}.
Find common denominator (120):
det(A)=4512016120=29120\det(A) = \frac{45}{120} - \frac{16}{120} = \frac{29}{120}.
Now, compute A1A^{-1}:
A1=129120[34132512]A^{-1} = \frac{1}{\frac{29}{120}} \begin{bmatrix} \frac{3}{4} & -\frac{1}{3} \\ -\frac{2}{5} & \frac{1}{2} \end{bmatrix}
=12029[34132512]= \frac{120}{29} \begin{bmatrix} \frac{3}{4} & -\frac{1}{3} \\ -\frac{2}{5} & \frac{1}{2} \end{bmatrix}
=[9029402948296029]= \begin{bmatrix} \frac{90}{29} & -\frac{40}{29} \\ -\frac{48}{29} & \frac{60}{29} \end{bmatrix}.

4. Inverse of a Matrix with a Zero Entry
Question: Compute A1A^{-1} for
A=[4032]A = \begin{bmatrix} 4 & 0 \\ 3 & 2 \end{bmatrix}.
Solution:
Compute det(A)\det(A):
det(A)=(4)(2)(0)(3)=8\det(A) = (4)(2) - (0)(3) = 8.
Now, compute A1A^{-1}:
A1=18[2034]A^{-1} = \frac{1}{8} \begin{bmatrix} 2 & 0 \\ -3 & 4 \end{bmatrix}
=[2803848]= \begin{bmatrix} \frac{2}{8} & 0 \\ -\frac{3}{8} & \frac{4}{8} \end{bmatrix}
=[1403812]= \begin{bmatrix} \frac{1}{4} & 0 \\ -\frac{3}{8} & \frac{1}{2} \end{bmatrix}.

5. Matrix with Integer Determinant
Question: Compute A1A^{-1} for
A=[5327]A = \begin{bmatrix} 5 & 3 \\ 2 & 7 \end{bmatrix}.
Solution:
Compute det(A)\det(A):
det(A)=(5)(7)(3)(2)=356=29\det(A) = (5)(7) - (3)(2) = 35 - 6 = 29.
Now, compute A1A^{-1}:
A1=129[7325]A^{-1} = \frac{1}{29} \begin{bmatrix} 7 & -3 \\ -2 & 5 \end{bmatrix}
=[729329229529]= \begin{bmatrix} \frac{7}{29} & -\frac{3}{29} \\ -\frac{2}{29} & \frac{5}{29} \end{bmatrix}.

6. Singular Matrix (No Inverse)
Question: Compute A1A^{-1} for
A=[2412]A = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}.
Solution:
Compute det(A)\det(A):
det(A)=(2)(2)(4)(1)=44=0\det(A) = (2)(2) - (4)(1) = 4 - 4 = 0.
Since det(A)=0\det(A) = 0, the matrix is singular and has no inverse.

7. Inverse of a Negative Matrix
Question: Compute A1A^{-1} for
A=[3214]A = \begin{bmatrix} -3 & -2 \\ -1 & -4 \end{bmatrix}.
Solution:
Compute det(A)\det(A):
det(A)=(3)(4)(2)(1)=122=10\det(A) = (-3)(-4) - (-2)(-1) = 12 - 2 = 10.
Now, compute A1A^{-1}:
A1=110[4213]A^{-1} = \frac{1}{10} \begin{bmatrix} -4 & 2 \\ 1 & -3 \end{bmatrix}
=[410210110310]= \begin{bmatrix} -\frac{4}{10} & \frac{2}{10} \\ \frac{1}{10} & -\frac{3}{10} \end{bmatrix}
=[2515110310]= \begin{bmatrix} -\frac{2}{5} & \frac{1}{5} \\ \frac{1}{10} & -\frac{3}{10} \end{bmatrix}.

8. Identity Matrix
Question: Compute A1A^{-1} for
A=[1001]A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
Solution:
Since AA is the identity matrix, its inverse is itself:
A1=A=[1001]A^{-1} = A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.

9. Inverse with Decimal Entries
Question: Compute A1A^{-1} for
A=[0.50.20.30.7]A = \begin{bmatrix} 0.5 & 0.2 \\ 0.3 & 0.7 \end{bmatrix}.
Solution:
Compute det(A)\det(A):
det(A)=(0.5)(0.7)(0.2)(0.3)=0.350.06=0.29\det(A) = (0.5)(0.7) - (0.2)(0.3) = 0.35 - 0.06 = 0.29.
Now, compute A1A^{-1}:
A1=10.29[0.70.20.30.5]A^{-1} = \frac{1}{0.29} \begin{bmatrix} 0.7 & -0.2 \\ -0.3 & 0.5 \end{bmatrix}.
Approximating:
A1[2.410.691.031.72]A^{-1} \approx \begin{bmatrix} 2.41 & -0.69 \\ -1.03 & 1.72 \end{bmatrix}.

10. Large Numbers
Question: Compute A1A^{-1} for
A=[10573]A = \begin{bmatrix} 10 & 5 \\ 7 & 3 \end{bmatrix}.
Solution:
det(A)=(10)(3)(5)(7)=3035=5\det(A) = (10)(3) - (5)(7) = 30 - 35 = -5.
A1=15[35710]A^{-1} = \frac{1}{-5} \begin{bmatrix} 3 & -5 \\ -7 & 10 \end{bmatrix}
=[351752]= \begin{bmatrix} -\frac{3}{5} & 1 \\ \frac{7}{5} & -2 \end{bmatrix}.

paragraph
Thank you for taking the time to read my blog post! Your interest and engagement mean so much to me, and I hope the content provided valuable insights and sparked your curiosity. Your journey as a student is inspiring, and it’s my goal to contribute to your growth and success.
paragraph
If you found the post helpful, feel free to share it with others who might benefit. I’d also love to hear your thoughts, feedback, or questions—your input makes this space even better. Keep striving, learning, and achieving! 😊📚✨
paragraph

I recommend you check my Post on the following:

Share this post with your friends on social media if you learned something or was informed.

Leave a Reply
Your email address will not be published. Required fields are marked *

Save my name and email in this browser for the next time I comment.

Subscribe to our newsletter so you could get the latest post via E-mail

Recent Posts:


Jamb Mathematics - Lesson Notes on Probability for UTME Candidate
Jamb Mathematics - Lesson Notes on Permutation and Combination for UTME Candidate
Jamb Mathematics - Lesson Notes on Measure of Dispersion for UTME Candidate
Jamb Mathematics - Lesson Notes on Measure of Location for UTME Candidate

Stay Updated:

Like us on Facebook

Explore


Quick Links